The incidence of Parkinson's disease currently outpaces the rate of aging and is growingdisproportionately in newly industrialized areas of the globe. Scientific evidence suggeststhat exposure to environmental toxicants during neurodevelopment, whether in utero,perinatal or childhood, may have a significant impact on the risk of developing Parkinson'sdisease in the future. More often we have a combination of factors/triggers that lastfor decades, such as pesticides, organic solvents, metals and air pollution. The relationshipbetween exposure and disease is variable, meaning that gene-environment and environment-environment interactions and other exposure dynamics contribute to the disease phenotype.Since all disease phenotypes are the result of our genes (intrinsic factors) and environment(extrinsic factors), there is no doubt that gene-environment interactions account for mostcases of idiopathic Parkinson's disease. Unraveling key aspects of our understandingof the environmental risk associated with Parkinson's disease in the human populationrequires experimental work. Collaboration between interdisciplinary teams and new technologies combined with basic toxicological principles is required. With both laboratoryand analytical support, incorporating biomarkers, transcriptomics or metabolomics, and geneenvironment interactions into research projects would be an ideal mechanism for PD research,both in the preclinical and clinical areas. Understanding the contribution of the environmentto PD is critical as it could potentially help prevent the development and/or progressionof this as yet incurable disease in some percentage of cases.
- 1. Hemming, J. P., Gruber-Baldini A. L., Anderson K. E., Fishman P. S., Reich S. G., Weiner W. J., Shulman L. M. Racial and socioeconomic disparities in parkinsonism // Arch Neurol. – 2011. – Vol. 68. – P. 498–503.
- 2. Goldman, S. M., Marek K., Ottman R., Meng C., Comyns K., Chan P., Ma J., Marras C., Langston J. W., Ross G. W., Tanner C. M. Concordance for Parkinson’s disease in twins: а 20-year update // Ann Neurol. – 2019. – Vol. 85. – P. 600–605.
- 3. Purisai, M. G., McCormack A. L., Cumine S., Li J., Isla M. Z., Di Monte D. A. Microglial activation as a priming event leading to paraquat-induced dopaminergic cell degeneration // Neurobiol Dis. – 2007. – Vol. 25. – P. 392–400.
- 4. Slotkin, T. A., Seidler F. J. Developmental exposure to organophosphates triggers transcriptional changes in genes associated with Parkinson’s disease in vitro and in vivo // Brain Res Bull. – 2011. – Vol. 86. – P. 340–347.
- 5. Narayan, S., Liew Z., Bronstein J. M., Ritz B. Occupational pesticide use and Parkinson’s disease in the Parkinson Environment Gene (PEG) study // Environ Int. – 2017. – Vol. 107. – P. 266–273.
- 6. Cannon, J. R., Greenamyre J. T. Gene-environment interactions in Parkinson’s disease: Specific evidence in humans and mammalian models // Neurobiol Dis. – 2013. – Vol. 57. – P. 38–46.
- 7. Hill-Burns, E. M., Singh N., Ganguly P., Hamza T. H., Montimurro J., Kay D. M., Yearout D., Sheehan P., Frodey K., McLear J. A., Feany M. B., Hanes S. D., Wolfgang W. J., Zabetian C. P., Factor S. A., Payami H. A genetic basis for the variable effect of smoking/nicotine on Parkinson’s disease // Pharmacogenomics J. – 2013. – Vol. 13. – P. 530–537.
- 8. Markey, S. P., Johannessen J. N., Chiueh C. C., Burns R. S., Herkenham M. A. Intraneuronal generation of a pyridinium metabolite may cause druginduced parkinsonism // Nature. – 1984. – Vol. 311. – P. 464–467.
- 9. Sauerbeck, A., Hunter R., Bing G., Sullivan P. G. Traumatic brain injury and trichloroethylene exposure interact and produce functional, histological, and mitochondrial deficits // Exp Neurol. – 2012. – Vol. 234. – P. 85–94.
- 10. Ando, M., Ueda K., Okamoto Y., Kojima N. Combined effects ofmanganese, iron, copper, and dopamine on oxidative DNA damage // Health Sci. – 2011. – Vol. 57. – P. 204–209.
- 11. Corrigan, F. M., Wienburg C. L., Shore R. F., Daniel S. E., Mann D. Organochlorine insecticides in substantia nigra in Parkinson’s disease // J Toxicol Environ Health A. – 2000. – Vol. 59. – P. 229–234.
- 12. Hatcher-Martin, J. M., Gearing M., Steenland K., Levey A. I., Miller G.W., Pennell K. D. Association between polychlorinated biphenyls and Parkinson’s disease neuropathology // Neurotoxicology. – 2012. – Vol. 33. – P. 1298–1304.
- 13. Nielsen, S. S., Warden M. N., Sallmen M., Sainio M., Uuksulainen S., Checkoway H., Hublin C., Racette B. A. Solvent exposed occupations and risk of Parkinson disease in Finland // Clin Park Relat Disord. – 2021. – № 4. – Р. 100092.
- 14. Branco, R. C., Ellsworth W., Niedzwiecki M. M., Butkovich L. M., Walker D. I., Huddleston D. E., Jones D. P., Miller G. W. Levodopa and dopamine dynamics in Parkinson’s disease metabolomics. bioRxiv, 306266. – 2018.
- 15. Shavali, S., Sens D. A. Synergistic neurotoxic effects of arsenic and dopamine in human dopaminergic neuroblastoma SH-SY5Y cells // Toxicol Sci. – 2008. – Vol. 102. – P. 254–261.
- 16. Svensson, E., Horvath-Puho E., Thomsen R. W., Djurhuus J. C., Pedersen L., Borghammer P., Sorensen H. T. Vagotomy and subsequent risk of Parkinson’s disease // Ann Neurol. – 2015. – Vol. 78. – P. 522–529.
- 17. Braak, H., Rub U., Gai W. P., Del Tredici K. Idiopathic Parkinson’s disease: Possible routes by which vulnerable neuronal types may be subject to neuroinvasion by an unknown pathogen // J Neural Transm (Vienna). – 2003. – Vol. 110. – P. 517–536.
- 18. Pan-Montojo, F., Anichtchik O., Dening Y., Knels L., Pursche S., Jung R., Jackson S., Gille G., Spillantini M. G., Reichmann H., Funk R. H. Progression of Parkinson’s disease pathology is reproduced by intragastric administration of rotenone in mice // PLoS One. – 2010. – № 5. – P. e8762.
- 19. Hill-Burns, E. M., Debelius J. W., Morton J. T., Wissemann W. T., Lewis M. R., Wallen Z. D., Peddada S. D., Factor S. A., Molho E., Zabetian C. P., Knight R., Payami H. Parkinson’s disease and Parkinson’s disease medications have distinct signatures of the gut microbiome // Mov Disord. – 2017. – Vol. 32. – P. 739–749.
- 20. Blossom, S. J., Melnyk S. B., Simmen F. A. Complex epigenetic patterns in cerebellum generated after developmental exposure to trichloroethylene and/or high fat diet in autoimmune-prone mice // Environ Sci Process Impacts. – 2020. – Vol. 22. – P. 583–594.