The problem of cancer as a leading cause of death in the world is particularly relevant in the most developed countries. Metastasis of cancer cells through the lymphatic channel - the leading pathological mechanism genesis of many malignancies. Material article focuses on the discussion of issues cos regarding growth and development of the lymphatic capillaries in tissues of epithelial ovarian cancer and computer-assisted morphological characteristics of lymphatic vessels based on analogous Lease histological images using original software. Article contains tains links to sources of information for further research reading for professionals medical sciences, and professionals of computer and related technical disciplines.
- 1. Заболеваемость и смертность от злокачественных новообразований: Россия, 2000 год http://demoscope.ru/weekly/2002/089/analit03.php.
- 2. Cancer incidence and mortality in the United Kingdom http:// www.statistics.gov.uk/StatBase/Product.asp?vlnk=14209.
- 3. Arab, M. Incidence rate of ovarian cancer in Iran in comparison with developed countries. Indian / M. Arab [et al.] // J Cancer. Jul-Sep;47(3):322 – 7.
- 4. Bray, F. Ovarian cancer in Europe: Cross-sectional trends in incidence and mortality in 28 countries, 1953 – 2000 / F. Bray [et al.] // Int J Cancer. 2005 Mar 1;113(6):977 – 90.
- 5. Gonzalez Diego, P. Time trends in ovarian cancer mortality in Europe (1955-1993): effect of age, birth cohort and period of death / P. Gonzalez-Diego [et al.] // Eur J Cancer. 2000 Sep;36(14):1816 – 24.
- 6. http://www.ecancermedia.com/Ovarian_Cancer_Factsheet.aspx.
- 7. Zhen, L. F. Expressions of D2-40 and CD34 in invasive ductal carcinoma of the breast and the clinical implications / L. F. Zhen [et al.] // Nan Fang Yi Ke Da Xue Xue Bao. Jul;30(7):1548 – 51.
- 8. Plaza, J. A. Immunolabeling Pattern of Podoplanin (D2-40) May Distinguish Basal Cell Carcinomas From Trichoepitheliomas: A Clinicopathologic and Immunohistochemical Study of 49 Cases / J. A. Plaza [et al.] // Am J Dermatopathol. Jun 17.
- 9. Raica, M. Diagnostic and clinical significance of D2-40 expression in the normal human thymus and thymoma / M. Raica [et al.] // Rom J Morphol Embryol.51(2):229 – 34.
- 10. Hu, Y. Value of D2-40 in the Differential Diagnosis of Pleural Neoplasms With Emphasis on Its Positivity in Solitary Fibrous Tumor / Y. Hu [et al.] // Appl Immunohistochem Mol Morphol. Apr 27.
- 11. Mahalingam, M. D2-40 expression in primary scarring and nonscarring alopecia / M. Mahalingam, M. P. Hoang // Am J Dermatopathol.Jul;32(5):427 – 31.
- 12. Jin, Z. W. Fetal anatomy of peripheral lymphatic vessels: a D2!40 immunohistochemical study using an 18-week human fetus (CRL 155 mm) / Z. W. Jin [et al.] // J Anat. Jun;216(6):671 – 82.
- 13. Plaza, J. A. Value of p63 and podoplanin (D2-40) immunoreactivity in the distinction between primary cutaneous tumors and adenocarcinomas metastatic to the skin: a clinicopathologic and immunohistochemical study of 79 cases / J. A. Plaza [et al.] // J Cutan Pathol. Apr;37(4):403 – 10.
- 14. Agaimy, A. Lymphatics and D2-40/podoplanin expression in gastroin-testinal stromal tumours of the stomach with and without lymph node metastasis: an immunohistochemical study with special reference to the Carney triad / A. Agaimy, J. A. Carney // J Clin Pathol. Mar;63(3):229 – 34.
- 15. Mahalingam, M. The diagnostic utility of immunohistochemistry in distinguishing primary skin adnexal carcinomas from metastatic adenocarcinoma to skin: an immunohistochemical reappraisal using cytokeratin 15, nestin, p63, D2-40, and calretinin / M. Mahalingam [et al.] // Mod Pathol. May;23(5):713 – 9.
- 16. Debald, M. Increased detection of lymphatic vessel invasion by D2-40 (podoplanin) in early breast cancer: possible influence on patient selection for accelerated partial breast irradiation / M. Debald [et al.] // Int J Radiat Oncol Biol Phys. Jul 15;77(4):1128 – 33.
- 17. Bandarchi, B. D2-40, a novel immunohistochemical marker in differentiating dermatofibroma from dermatofibrosarcoma protuberans / B. Bandarchi [et al.] // Mod Pathol. Mar;23(3):434 – 8.
- 18. Kadota, K, Huang CL, Liu D, Nakashima N, Yokomise H, Ueno M, et al. The clinical significance of the tumor cell D2-40 immunoreactivity in nonsmall cell lung cancer. Lung Cancer. Jan 8.
- 19. Matsumoto, N, Mukae S, Tsuda H, Sawada A, Okazaki Y, Nagai K, et al. Prognostic value of LYVE!1-positive lymphatic vessel in tongue squamous cell carcinomas. Anticancer Res. Jun;30(6):1897 – 903.
- 20. Noda, Y, Amano I, Hata M, Kojima H, Sawa Y. Immunohistochemical Examination on the Distribution of Cells Expressed Lymphatic Endothelial Marker Podoplanin and LYVE!1 in the Mouse Tongue Tissue. Acta Histochem Cytochem. May 1;43(2):61 – 8.
- 21. Ribatti, D, Nico B, Cimpean AM, Raica M. Podoplanin and LYVE!1 expression in lymphatic vessels of human neuroblastoma. J Neurooncol. Feb 27.
- 22. Arimoto, J, Ikura Y, Suekane T, Nakagawa M, Kitabayashi C, Iwasa Y, et al. Expression of LYVE!1 in sinusoidal endothelium is reduced in chronically inflamed human livers. J Gastroenterol. Mar;45(3):317 – 25.
- 23. Banerji, S, Hide BR, James JR, Noble ME, Jackson DG. Distinctive properties of the hyaluronan-binding domain in the lymphatic endothelial receptor Lyve-1 and their implications for receptor function. J Biol Chem. Apr 2;285(14):10724 – 35.
- 24. Smith, NR, Baker D, James NH, Ratcliffe K, Jenkins M, Ashton SE, et al. Vascular endothelial growth factor receptors VEGFR-2 and VEGFR-3 are localized primarily to the vasculature in human primary solid cancers. Clin Cancer Res. Jul 15;16(14):3548 – 61.
- 25. Ni, X.F, Wu CP, Jiang JT. Serum VEGFR-3 and survival of advanced gastric cancer patients treated with FOLFOX. World J Gastroenterol. May 7;16(17):2163 – 9.
- 26. Saharinen, P, Helotera H, Miettinen J, Norrmen C, D’Amico G, Jeltsch M, et al. Claudinlike protein 24 interacts with the VEGFR-2 and VEGFR-3 pathways and regulates lymphatic vessel development. Genes Dev. May;24(9):875 – 80.
- 27. Galvagni, F, Pennacchini S, Salameh A, Rocchigiani M, Neri F, Orlandini M, et al. Endothelial cell adhesion to the extracellular matrix induces c-Src-dependent VEGFR-3 phosphorylation without the activation of the receptor intrinsic kinase activity. Circ Res. Jun 25;106(12):1839 – 48.
- 28. Seyama, K, Mitani K, Kumasaka T, Gupta SK, Oommen S, Liu G, et al. Lymphangioleiomyoma cells and lymphatic endothelial cells: expression of VEGFR-3 in lymphangioleiomyoma cell clusters. Am J Pathol. Apr;176(4):2051!2; author reply 2 – 4.
- 29. Tokuyama, W, Mikami T, Masuzawa M, Okayasu I. Autocrine and paracrine roles of VEGF/VEGFR-2 and VEGF-C/VEGFR-3 signaling in angiosarcomas of the scalp and face. Hum Pathol. Mar;41(3):407 – 14.
- 30. Flister, M. J., Wilber A, Hall KL, Iwata C, Miyazono K, Nisato RE, et al. Inflammation induces lymphangiogenesis through up-regulation of VEGFR-3 mediated by NF-kappaB and Prox1. Blood. Jan 14;115(2):418 – 29.
- 31. Donnem, T, Al-Saad S, Al-Shibli K, Busund LT, Bremnes RM. Co-ex-pression of PDGF-B and VEGFR-3 strongly correlates with lymph node metastasis and poor survival in non-small-cell lung cancer. Ann Oncol. Feb;21(2):223 – 31.
- 32. Hou, T. Z, Bystrom J, Sherlock JP, Qureshi O, Parnell SM, Anderson G, et al. A distinct subset of podoplanin (gp38) expressing F4/80+ macrophagees mediate phagocytosis and are induced following zymosan peritonitis. FEBS Lett. Jul 31.
- 33. Cortez, M.A, Nicoloso MS, Shimizu M, Rossi S, Gopisetty G, Molina JR, et al. miR!29b and miR-125a regulate podoplanin and suppress invasion in glioblastoma. Genes Chromosomes Cancer. Jul 27.
- 34. Cueni, L. N, Hegyi I, Shin JW, Albinger!Hegyi A, Gruber S, Kunstfeld R, et al. Tumor lymphangiogenesis and metastasis to lymph nodes induced by cancer cell expression of podoplanin. Am J Pathol. Aug;177(2):1004 – 16.
- 35. Hata, M, Amano I, Tsuruga E, Kojima H, Sawa Y. Immunoelectron microscopic study of podoplanin localization in mouse salivary gland myoepithelium. Acta Histochem Cytochem. May 1;43(2):77!82.
- 36. Chaipan, C, Steffen I, Tsegaye TS, Bertram S, Glowacka I, Kato Y, et al. Incorporation of podoplanin into HIV released from HEK!293T cells, but not PBMC, is required for efficient binding to the attachment factor CLEC-2. Retrovirology.7:47.
- 37. Shintaku, M, Honda T, Sakai T. Expression of podoplanin and calretin in in meningioma: an immunohistochemical study. Brain Tumor Pathol. Apr;27(1):23 – 7.
- 38. Hansen, T, Kirkpatrick CJ. Expression of podoplanin in Warthin tumours. Oral Maxillofac Surg. Apr 22.
- 39. Ariizumi, T, Ogose A, Kawashima H, Hotta T, Li G, Xu Y, et al. Expression of podoplanin in human bone and bone tumors: New marker of osteogenic and chondrogenic bone tumors. Pathol Int. Mar;60(3):193 – 202.
- 40. Kreppel, M, Scheer M, Drebber U, Ritter L, Zoller JE. Impact of podoplanin expression in oral squamous cell carcinoma: clinical and histopathologic correlations. Virchows Arch. May;456(5):473 – 82.
- 41. Margaritescu, C, Raica M, Pirici D, Simionescu C, Mogoanta L, Stinga AC, et al. Podoplanin expression in tumor-free resection margins of oral squamous cell carcinomas: an immunohistochemical and fractal analysis study. Histol Histopathol. Jun;25(6):701 – 11.
- 42. Sun, Q, Yan M, Zhou XJ, Li XM, Mao L, Chen WT. [Effects of Podoplanin on cell proliferation and cell cycle in oral leukoplakia cells.]. Zhonghua Kou Qiang Yi Xue Za Zhi. Jan;45(1):6 – 10.
- 43. Zustin, J, Scheuer HA, Friedrich RE. Podoplanin expression in human tooth germ tissues and cystic odontogenic lesions: an immunohistochemical study. J Oral Pathol Med. Jan;39(1):115 – 20.
- 44. Shi, P, Liu W, Zhou ZT, He QB, Jiang WW. Podoplanin and ABCG2: malignant transformation risk markers for oral lichen planus. Cancer Epidemiol Biomarkers Prev. Mar;19(3):844 – 9.
- 45. Rodrigo, J.P, Garcia!Carracedo D, Gonzalez MV, Mancebo G, Fresno MF, Garcia-Pedrero J. Podoplanin expression in the development and progression of laryngeal squamous cell carcinomas. Mol Cancer.9:48.
- 46. Hanna, A, Pang Y, Bedrossian CW, Dejmek A, Michael CW. Podoplanin is a useful marker for identifying mesothelioma in malignant effusions. Diagn Cytopathol. Apr;38(4):264 – 9.
- 47. Shen, Y, Chen CS, Ichikawa H, Goldberg GS. SRC induces podoplanin expression to promote cell migration. J Biol Chem. Mar 26;285(13):9649 – 56.
- 48. Uhrin, P, Zaujec J, Breuss JM, Olcaydu D, Chrenek P, Stockinger H, et al. Novel function for blood platelets and podoplanin in developmental separation of blood and lymphatic circulation. Blood. May 13;115(19):3997 – 4005.
- 49. Rahadiani, N, Ikeda J, Makino T, Tian T, Qiu Y, Mamat S, et al. Tumorigenic role of podoplanin in esophageal squamous!cell carcinoma. Ann Surg Oncol. May;17(5):1311 – 23.
- 50. Barth, K, Blasche R, Kasper M. T1alpha/podoplanin shows raft!associated distribution in mouse lung alveolar epithelial E10 cells. Cell Physiol Biochem.25(1):103 – 12.
- 51. Kanner, W.A, Galgano MT, Atkins KA. Podoplanin expression in basal and myoepithelial cells: utility and potential pitfalls. Appl Immunohistochem Mol Morphol. May;18(3):226 – 30.
- 52. Okamoto, E, Kikuchi K, Miyazaki Y, Gonzalez!Alva P, Oku Y, Tanaka A, et al. Significance of podoplanin expression in keratocystic odontogenic tumor. J Oral Pathol Med. Jan;39(1):110 – 4.
- 53. Bolzoni, Villaret A, Schreiber A, Facchetti F, Fisogni S, Lonardi S, Lombardi D, et al. Immunostaining patterns of CD31 and podoplanin in previously untreated advanced oral/oropharyngeal cancer: prognostic implications. Head Neck. Jun;32(6):786 – 92.
- 54. Birke, K, Lutjen!Drecoll E, Kerjaschki D, Birke MT. Expression of podoplanin and other lymphatic markers in the human anterior eye segment. Invest Ophthalmol Vis Sci. Jan;51(1):344 – 54.
- 55. Gonzalez Alva, P, Tanaka A, Oku Y, Miyazaki Y, Okamoto E, Fujinami M, et al. Enhanced expression of podoplanin in ameloblastomas. J Oral Pathol Med. Jan;39(1):103 – 9.
- 56. Cimpean, A.M, Seclaman E, Ceausu R, Gaje P, Feflea S, Anghel A, et al. VEGF!A/HGF induce Prox!1 expression in the chick embryo chorioallantoic membrane lymphatic vasculature. Clin Exp Med. Sep;10(3):169 – 72.
- 57. McGovern, S, Pan J, Oliver G, Cutz E, Yeger H. The role of hypoxia and neurogenic genes (Mash-1 and Prox-1) in the developmental programming and maturation of pulmonary neuroendocrine cells in fetal mouse lung. Lab Invest. Feb;90(2):180 – 95.
- 58. Hobbs, R.P, Han SY, van der Zwaag PA, Bolling MC, Jongbloed JD, Jonkman MF, et al. Insights from a Desmoplakin Mutation Identified in Lethal Acantholytic Epidermolysis Bullosa. J Invest Dermatol. Jul 8.
- 59. Cabral, R.M, Wan H, Cole CL, Abrams DJ, Kelsell DP, South AP. Identification and characterization of DSPIa, a novel isoform of human desmoplakin. Cell Tissue Res. Jul;341(1):121 – 9.
- 60. Bolling, M.C, Veenstra MJ, Jonkman MF, Diercks GF, Curry CJ, Fisher J, et al. Lethal acantholytic epidermolysis bullosa due to a novel homozygous deletion in DSP: expanding the phenotype and implications for desmoplakin function in skin and heart. Br J Dermatol. Feb 3.
- 61. Mahoney, M.G, Sadowski S, Brennan D, Pikander P, Saukko P, Wahl J, et al. Compound heterozygous desmoplakin mutations result in a phenotype with a combination of myocardial, skin, hair, and enamel abnormalities. J Invest Dermatol. Apr;130(4):968 – 78.
- 62. Da, M.X, Wu Z, Tian HW. Tumor lymphangiogenesis and lymphangiogenic growth factors. Arch Med Res. 2008 May;39(4):365 – 72.
- 63. Bednarek, W, Mazurek!Kociubowska M, Sobstyl M, Wertel I, Czekierdowski A. [Expression of lymphangiogenesis marker neuropilin!1 in different types of ovarian cancer]. Ginekol Pol. Mar;81(3):176 – 82.
- 64. Zhao, R.W, Yang S.H, Cai LQ, Zhang J, Wang J, Wang ZH. [Roles ofvascular endothelial growth factor and platelet!derived growth factor in lymphangiogenesis in epithelial ovarian carcinoma.]. Zhonghua Fu Chan Ke ZaZhi. 2009 Oct;44(10):760 – 4.
- 65. Sapoznik, S, Cohen B, Tzuman Y, Meir G, Ben!Dor S, Harmelin A, et al. Gonadotropin-regulated lymphangiogenesis in ovarian cancer is mediated by LEDGF!induced expression of VEGF-C. Cancer Res. 2009 Dec 15;69(24):9306 – 14.
- 66. Jeon, B.H, Jang C, Han J, Kataru RP, Piao L, Jung K, et al. Profound but dysfunctional lymphangiogenesis via vascular endothelial growth factor ligands from CD11b+ macrophages in advanced ovarian cancer. Cancer Res. 2008 Feb 15;68(4):1100 – 9.
- 67. Brown, H.M, Dunning KR, Robker RL, Pritchard M, Russell DL. Requirement for ADAMTS!1 in extracellular matrix remodeling during ovarian folliculogenesis and lymphangiogenesis. Dev Biol. 2006 Dec 15;300(2):699 – 709.
- 68. Sundar, S.S, Zhang H, Brown P, Manek S, Han C, Kaur K, et al. Role of lymphangiogenesis in epithelial ovarian cancer. Br J Cancer. 2006 Jun 5;94(11):1650 – 7.
- 69. Hsieh, C.Y, Chen CA, Chou CH, Lai KP, Jeng YM, Kuo ML, et al. Overexpression of Her!2/NEU in epithelial ovarian carcinoma induces vascular endothelial growth factor C by activating NF-kappa B: implications for malignant ascites formation and tumor lymphangiogenesis. J Biomed Sci. 2004 Mar-Apr;11(2):249 – 59.
- 70. Bhattacharjee, R.N, Timoshenko AV, Cai J, Lala PK. Relationship between cyclooxygenase!2 and human epidermal growth factor receptor 2 in vascular endothelial growth factor C up-regulation and lymphangiogenesis in human breast cancer. Cancer Sci. Jun 14.
- 71. Guo, G.L, Yang GL, Li ZY, You J, Yang K, Huang DP, et al. [The effect of cyclooxygenase-2 on lymphangiogenesis in breast cancer]. Zhonghua Wai Ke Za Zhi. 2008 Jan 15;46(2):132 – 5.
- 72. Da, M.X, Wu XT, Wang J, Guo TK, Zhao ZG, Luo T, et al. Expression of cyclooxygenase!2 and vascular endothelial growth factor!C correlates with lymphangiogenesis and lymphatic invasion in human gastric cancer. Arch Med Res. 2008 Jan;39(1):92 – 9.
- 73. Iwata, C, Kano MR, Komuro A, Oka M, Kiyono K, Johansson E, et al. Inhibition of cyclooxygenase-2 suppresses lymph node metastasis via reduction of lymphangiogenesis. Cancer Res. 2007 Nov 1;67(21):10181 –9.
- 74. Barnes, N.L, Warnberg F, Farnie G, White D, Jiang W, Anderson E, et al. Cyclooxygenase-2 inhibition: effects on tumour growth, cell cycling and lymphangiogenesis in a xenograft model of breast cancer. Br J Cancer. 2007 Feb 26;96(4):575 – 82.
- 75. Su. J.L, Shih JY, Yen ML, Jeng YM, Chang CC, Hsieh CY, et al. Cyclooxygenase-2 induces EP1-and HER-2/Neu!dependent vascular endothelial growth factor!C up!regulation: a novel mechanism of lymphangiogenesis in lung adenocarcinoma. Cancer Res. 2004 Jan 15;64(2):554 – 64.
- 76. Shin, J.W, Min M, Larrieu!Lahargue F, Canron X, Kunstfeld R, Nguyen L, et al. Prox1 promotes lineage!specific expression of fibroblast growth factor (FGF) receptor!3 in lymphatic endothelium: a role for FGF signaling in lymphangiogenesis. Mol Biol Cell. 2006 Feb;17(2):576 – 84.
- 77. Kubo, H, Cao R, Brakenhielm E, Makinen T, Cao Y, Alitalo K. Blockade of vascular endothelial growth factor receptor!3 signaling inhibits fibroblast growth factor-2-induced lymphangiogenesis in mouse cornea. Proc Natl Acad Sci U S A. 2002 Jun 25;99(13):8868 – 73.
- 78. Tan, Y. Basic fibroblast growth factor-mediated lymphangiogenesis of lymphatic endothelial cells isolated from dog thoracic ducts: effects of heparin. Jpn J Physiol. 1998 Apr;48(2):133 – 41.
- 79. Thurston, G. Role of Angiopoietins and Tie receptor tyrosine kinases in angiogenesis and lymphangiogenesis. Cell Tissue Res. 2003 Oct;314(1):61 – 8.
- 80. Bjorndahl, M, Cao R, Nissen LJ, Clasper S, Johnson LA, Xue Y, et al. Insulin-like growth factors 1 and 2 induce lymphangiogenesis in vivo. Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):1559 – 8.
- 81. Zhang, Q.H, Qian K, Li XJ, Pu J, Wu XT. [Experimental study of the hepatocyte growth factor contributing to lymphangiogenesis and lymphatic metastasis in gastric cancer]. Zhonghua Wei Chang Wai Ke Za Zhi. 2007 May;10(3):212 – 6.
- 82. Saito, Y, Nakagami H, Morishita R, Takami Y, Kikuchi Y, Hayashi H, et al. Transfection of human hepatocyte growth factor gene ameliorates secondary lymphedema via promotion of lymphangiogenesis. Circulation. 2006 Sep 12;114(11):1177 – 84.
- 83. Wuest, T.R, Carr DJ. VEGF-A expression by HSV-1-infected cells drives corneal lymphangiogenesis. J Exp Med. Jan 18;207(1):101 – 15.
- 84. Wang, X.L, Ai ZS, Fang JP, Tang RY, Chen XM. [Expression of vascular endothelial growth factors (VEGF)-A,-C and-D and their prognostic signifycance and relationship with angio!and lymphangiogenesis in gastric cancer]. Zhonghua Zhong Liu Za Zhi. 2008 Nov;30(11):837 – 43.
- 85. Shin, J.W, Huggenberger R, Detmar M. Transcriptional profiling of VEGF-A and VEGF-C target genes in lymphatic endothelium reveals endothelial-specific molecule!1 as a novel mediator of lymphangiogenesis. Blood. 2008 Sep 15;112(6):2318 – 26.
- 86. Chen, J.S, Zhang YJ, Hu SE, Zhang HQ. [Effects of VEGF-A/VEGF-C antisense oligodeoxynucleotide on angiogenesis, lymphangiogenesis, and tumor growth of breast cancer]. Ai Zheng. 2007 Sep;26(9):972 – 6.
- 87. Halin, C, Tobler NE, Vigl B, Brown LF, Detmar M. VEGF-A produced by chronically inflamed tissue induces lymphangiogenesis in draining lymph nodes. Blood. 2007 Nov 1;110(9):3158 – 67.
- 88. Mallory, BP, Mead TJ, Wiginton DA, Kulkarni RM, Greenberg JM, Akeson AL. Lymphangiogenesis in the developing lung promoted by VEGF-A. Microvasc Res. 2006 Jul-Sep;72(1-2):62 – 73.
- 89. Kadowaki, I, Ichinohasama R, Harigae H, Ishizawa K, Okitsu Y, Kameoka J, et al. Accelerated lymphangiogenesis in malignant lymphoma: possible role of VEGF!A and VEGF!C. Br J Haematol. 2005 Sep;130(6):869 – 77.
- 90. Hirakawa, S, Kodama S, Kunstfeld R, Kajiya K, Brown LF, Detmar M. VEGF-A induces tumor and sentinel lymph node lymphangiogenesis and promotes lymphatic metastasis. J Exp Med. 2005 Apr 4;201(7):1089 – 99.
- 91. Cursiefen, C, Chen L, Borges LP, Jackson D, Cao J, Radziejewski C, et al. VEGF-A stimulates lymphangiogenesis and hemangiogenesis in inflammatory neovascularization via macrophage recruitment. J Clin Invest. 2004 Apr;113(7):1040 – 50.
- 92. Cao, R, Eriksson A, Kubo H, Alitalo K, Cao Y, Thyberg J. Comparative evaluation of FGF-2-, VEGF-A-, and VEGF-C-induced angiogenesis, lymphangiogenesis, vascular fenestrations, and permeability. Circ Res. 2004 Mar 19;94(5):664 – 70.
- 93. Nagy, J.A, Vasile E, Feng D, Sundberg C, Brown LF, Manseau EJ, et al. VEGF-A induces angiogenesis, arteriogenesis, lymphangiogenesis, and vascular malformations. Cold Spring Harb Symp Quant Biol. 2002;67:227 – 37.
- 94. Lahdenranta J, Hagendoorn J, Padera TP, Hoshida T, Nelson G, Kashiwagi S, et al. Endothelial nitric oxide synthase mediates lymphangiogenesis and lymphatic metastasis. Cancer Res. 2009 Apr 1;69(7):2801 – 8.
- 95. Massi, D, De Nisi MC, Franchi A, Mourmouras V, Baroni G, Panelos J, et al. Inducible nitric oxide synthase expression in melanoma: implications in lymphangiogenesis. Mod Pathol. 2009 Jan;22(1):21-30.
- 96. Franchi, A, Massi D, Santucci M, Masini E, Degl’Innocenti DR, Magnelli L, et al. Inducible nitric oxide synthase activity correlates with lymphangiogenesis and vascular endothelial growth factor-C expression in head and neck squamous cell carcinoma. J Pathol. 2006 Feb;208(3):439 – 45.
- 97. Guo, R, Zhou Q, Proulx ST, Wood R, Ji RC, Ritchlin CT, et al. Inhibition of lymphangiogenesis and lymphatic drainage via vascular endothelial growth factor receptor 3 blockade increases the severity of inflammation in a mouse model of chronic inflammatory arthritis. Arthritis Rheum. 2009 Sep;60(9):2666 – 76.
- 98. Okazaki, T, Ni A, Ayeni OA, Baluk P, Yao LC, Vossmeyer D, et al. alpha5beta1 Integrin blockade inhibits lymphangiogenesis in airway inflammation. Am J Pathol. 2009 Jun;174(6):2378 – 87.
- 99. Kataru, RP, Jung K, Jang C, Yang H, Schwendener RA, Baik JE, et al. Critical role of CD11b+ macrophages and VEGF in inflammatory lymphang iogenesis, antigen clearance, and inflammation resolution. Blood. 2009 May 28;113(22):5650 – 9.
- 100. Halin, C, Detmar M. Chapter 1. Inflammation, angiogenesis, and lymphangiogenesis. Methods Enzymol. 2008;445:1 – 25.
- 101. Kajiya, K, Sawane M, Huggenberger R, Detmar M. Activation of the VEGFR-3 pathway by VEGF!C attenuates UVB-induced edema formation and skin inflammation by promoting lymphangiogenesis. J Invest Dermatol. 2009 May;129(5):1292 – 8.
- 102. Xu, X, Lu H, Lin H, Li X, Ni M, Sun H, et al. Aortic adventitial angiogenesis and lymphangiogenesis promote intimal inflammation and hyperplasia. Cardiovasc Pathol. 2009 Sep!Oct;18(5):269 – 78.
- 103. Xing, L, Ji RC. Lymphangiogenesis, myeloid cells and inflammation. Expert Rev Clin Immunol. 2008 Sep;4(5):599 – 613.
- 104. Xu, X, Lu H, Lin H, Ni M, Sun H, Li C, et al. Lymphangiogenesis promotes inflammation and neointimal hyperplasia after adventitia removal in the rat carotid artery. Int J Cardiol. 2009 May 29;134(3):426 – 7.
- 105. Cursiefen, C, Maruyama K, Jackson DG, Streilein JW, Kruse FE. Time course of angiogenesis and lymphangiogenesis after brief corneal inflammation. Cornea. 2006 May;25(4):443 – 7.
- 106. Schoppmann, SF. Lymphangiogenesis, inflammation and metastasis. Anticancer Res. 2005 Nov-Dec;25(6C):4503 – 11.
- 107. Maruyama, K, Ii M, Cursiefen C, Jackson DG, Keino H, Tomita M, et al. Inflammation-induced lymphangiogenesis in the cornea arises from CD11b-ositive macrophages. J Clin Invest. 2005 Sep;115(9):2363 – 72.
- 108. Schoppmann, SF, Horvat R, Birner P. Lymphatic vessels and lymphangiogenesis in female cancer: mechanisms, clinical impact and possible implications for anti!lymphangiogenic therapies (Review). Oncol Rep. 2002 May!Jun;9(3):455 – 60.
- 109. Barone, F, Clark R, Feuerstein G, Lenkinski R, Sarkar S. Quantitative comparison of magnetic resonance imaging (MRI) and histologic analyses of focal ischemic damage in the rat. Brain research bulletin. 1991;26(2):285 – 91.
- 110. Lymphangiogenesis in cancer metastasis. 1st ed. New York: Springer; 2009.
- 111. Birner, P, Schindl M, Obermair A, Plank C, Breitenecker G, Kowalski H, et al. Lymphatic microvessel density in epithelial ovarian cancer: its impact on prognosis. Anticancer Res. 2000 Sep-Oct;20(5A):2981 – 5.