С.М. Босяков, С.В. Ивашенко

Анализ влияния атрофии костной ткани на жесткости периодонта при поступательных перемещениях и поворотах корней зубов

Белорусский государственный университет Белорусский государственный медицинский университет

В настоящей работе представлены результаты нахождения жесткостей корней зубов при поступательных перемещениях и поворотах, возникающих в упругом периодонте с учетом атрофии костной ткани.

Ключевые слова: перемещения корней зубов, костная ткань, атрофия.

В стоматологической практике при визготовлении различных конструкций зубных протезов и ортодонтических аппаратов необходимо учитывать напряженнодеформированное состояние периодонта - тонкой упругой оболочки, расположенной между корнем зуба и костной тканью челюсти. Поскольку в периодонте расположены нервные окончания, при превышении предельно допустимых усилий, могут возникнуть болевые ощущения, благодаря сенсорной функции нервные импульсы передаются в центральную нервную систему, а оттуда на жевательную мускулатуру, что позволяет контро-101 лировать сократительную способность жевательных мышц. Однако при атрофии костной ткани сенсорная функция периодонта нарушается и жевательное давление может быть не адекватным состоянию опорного аппарата зуба, что в свою очередь может привести к подвижности и потере зуба. Поэтому, сведения о жесткости периодонта позволяют рационально дозировать нагрузку для оптимального ортодонтического лечения и протезирования. Это особенно важно в случаях, когда у пациента наблюдается атрофия костной ткани различной степени, которая приводит к увеличению подвижности зуба и снижению его функциональной ценности. Исследования влияния атрофии костной ткани на жесткость периодонта и напряжения, возникающие в периодонте, при поступательных перемещениях и поворотах корня выполнены в работах [1-3]. Ниже представлены результаты нахождения жесткостей периодонта при перемещениях и поворотах корня зуба в периодонте при атрофии костной ткани с учетом изменения высоты корня и полуосей эллипсов в сечении корня в соответствии с уравнением, описывающем поверхность корня зуба.

Перемещения корней зубов. Следуя [1] будем считать, что форма периодонта определяется двумя составными эллиптическими двуполостными гиперболоидами. Уравнения гиперболоидов представим в следующем виде:

$$F_0(x_1, x_2, x_3) = F(x_1, x_2, x_3) + h_0 = 0,$$

$$F(x_1, x_2, x_3) = x_3 - \frac{H}{\sqrt{1 + p^2} - p} \left(\sqrt{\frac{x_1^2}{a_1^2} + \frac{x_2^2}{b^2} + p^2} - p \right) = 0,$$
(1)

где H - высота корня зуба; P - параметр, характеризующий закругление вершины корня зуба; $a_1=a_1$ при $x\geq 0$ и $a_2=a_2$ при x<0, a_1 , $a_2=a_3$ при $a_4=a_4$ поверхности десны; $a_4=a_4$ поверхностью, проходящей по поверхности десны; $a_4=a_4$ поверхностью периодонта со стороны костной ткани, $a_4=a_4$ поверхность периодонта со стороны корня зуба.

Компоненты вектора перемещений u_{+} , u_{-} и представим в следующем виде [4]:

$$u_{1} = \frac{1}{h_{1}} \left(F(x_{1}, x_{2}, x_{1}) + h_{1} \right) \left(u_{1}^{(i)} + \varphi_{2} \left(x_{1} - x_{1}^{(i)} \right) - \varphi_{1} x_{2} \right)$$

$$u_{2} = \frac{1}{h_{1}} \left[F(x_{1}, x_{2}, x_{1}) + h_{1} \right) \left(u_{2}^{(i)} + \varphi_{1} \left(x_{1} - x_{1}^{(i)} \right) - \varphi_{1} \left(x_{1} - x_{1}^{(i)} \right) \right)$$

$$u_{3} = \frac{1}{h_{1}} \left[F(x_{1}, x_{2}, x_{1}) + h_{1} \right) \left(u_{1}^{(i)} + \varphi_{1} x_{2} - \varphi_{2} \left(x_{1} - x_{1}^{(i)} \right) \right)$$

$$(2)$$

Здесь и - поступательные перемещения корня вдоль осей координат: Ф : - углы поворота корня зуба относительно осей координат, $k = \overline{1,3}$, $x_1^{(\pm)}$, $x_2^{(\pm)}$, $x_3^{(\pm)}$, $x_3^{(\pm)}$ - координаты центров сопротивления корня. Отметим, что центрами сопротивления являются $A\left(0,0,x^{(1)}\right)$ $B\left(x_{i}^{(N)},0,x_{i}^{(N)}\right)$ $C\left(x_{1}^{(C)},0,0\right)$, через которые проходят линии действия двух горизонтальных и одной вертикальной сил, под действием которых корень зуба получает только поступательные перемещения. Линия действия силы, проходящая через точку А параллельна координатной оси X_1 , проходящая через точку B параллельна оси x_2 и, проходящая через точку c параллельна оси 3. Центры сопротивления и полуоси эллипсов схематично обозначены на рис. 1.

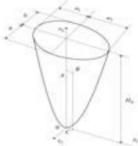


Рисунок 1. Центры сопротивления корня зуба,

В качестве граничных условий примем условия равенства нулю главного вектора и главного момента сил, действующих на зуб [5]:

$$\iint_{\mathbb{R}} (\hbar \cdot \sigma) dF - \tilde{P} = 0, \iint_{\mathbb{R}} P \times (\hbar \cdot \sigma) dF - \hbar = 0,$$
(3)

где $^{m}=(m_{1},m_{2},m_{3})$ - главный момент внешних сил; $^{p}=(P_{1},P_{2},P_{3})$ - главный вектор внешних сил; r - радиус-вектор, проведенный из соответствующего центра сопротивления; $^{r}\pi=(n_{1},n_{2},n_{3})$ - единичный вектор нормали к поверхности $F(x_{1},x_{2},x_{3})=0$; σ . тензор напряжений. Для изотропной среды компоненты тензора напряжений имеют вид [5]:

 $\sigma_{ii} = 2G \left(e_{ii} + \frac{\mathbf{v}\delta_{ij}}{1 - \mathbf{v}_{i+1}} \sum_{i=1}^{l} e_{ii}\right), \ 2G = B/(1 + \mathbf{v}), \ (4)$ G - модуль сдвига, \mathcal{E} - модуль упругости, \mathbf{v} - козффициент Пуассона, $\delta_{ij} = 1$, если i = j, $\delta_{ij} = 0$, если $i \neq j$, $e_{ij} = \left(\partial_i u_i + \partial_i u_i\right)/2$. компоненты тензора деформаций, $i, j = \overline{1, 3}$. Компоненты единичного вектора нормали определяются следующим образом:

$$n_{+} = \frac{1}{\Delta} \frac{\partial F}{\partial x_{+}} \quad \Delta = \sqrt{\sum_{i=1}^{3} \left(\frac{\partial F}{\partial x_{+}} \right)^{2}} \quad k = 1, 3$$
 (5)

Жесткости при поступательных перемещениях. Подставим компоненты единичного вектора нормали (5) и тензора напряжений (4) в граничные условия (3) и выделим коэффициенты при поступательных перемещениях $a^{(n)}$, $k = \sqrt{3}$. После несложных преобразований получим следующие выражения для нахождения жесткостей периодонта при поступательных перемещениях вдоль координатных осей [4]:

$$e_{i} = \frac{G}{h_{ij}} \prod_{p} \left[x_{i} \frac{dF}{\Delta} \right] = \sum_{i=1}^{3} \left[\left(\tilde{y}_{ik} + 1 \right) \frac{\partial F}{\partial x_{i}} - \frac{\partial F}{\partial x_{i}} \right]_{s}$$

$$i = \overline{1, 3}$$

представим в следующем виде:
$$a_1 = a_{01} \sqrt{s \left(s + 2p(1-s) \left(\sqrt{1+p^2} - p\right)\right)}, k = 1, 2,$$

$$b = b_{01} \sqrt{s \left(s + 2p(1-s) \left(\sqrt{1+p^2} - p\right)\right)},$$

где a_{01} , b_{0} — полуоси эллипса, ограничивающего профиль сечения корня зуба в норме.

В результате будем иметь:

$$c_{1} = \frac{\left(a_{1} + a_{2}\right)Ga\left(\gamma b^{2}H^{2} + a_{1}a_{2}\left[H^{2} + 2c_{1}b^{2}\right] - H^{2}\rho^{2}c_{2}\left[a_{1}a_{2} + \gamma b^{2}\right)\right)}{4bHa_{1}a_{2}c_{1}},$$

$$c_{2} = \frac{\left(a_{1} + a_{2}\right)Ga\left[b^{2}H^{2} + a_{1}a_{2}\left[\gamma H^{2} + 2\gamma b^{2}\right] - H^{2}\rho^{2}c_{2}\left[\gamma a_{1}a_{2} + b^{2}\right)\right)}{4a_{1}a_{2}bHa_{1}},$$

$$s_{3} = \frac{\left(a_{1} + a_{2}\right)Ga\left[b^{2}H^{2} + a_{1}a_{2}\left[\gamma H^{2} + 2\gamma b^{2}\right] - H^{2}\rho^{2}c_{2}\left[\gamma a_{1}a_{2} + b^{2}\right]\right)}{4a_{1}a_{2}bHa_{1}},$$

$$s_{4} = \frac{\left(a_{1} + a_{2}\right)Ga\left[a_{1} + a_{2}\right]Ga\left[a_{1} + a_{2}\right]}{2a_{1}a_{2} + a_{2}a_{2}}$$

$$c_{i} = \frac{(a+a_{i})G\eta(b^{i}H^{i}+a_{i}a_{i}(H^{i}+2\eta rb^{i})-H^{i}p^{i}r(a_{i}a_{i}+b^{i}))}{4aa_{i}bH_{i}}$$

где $(\sqrt{1+\rho^2}-\rho)^2$, $r_1=\ln(1/p^2+1)$. Заметим, что при s=1 выражения (8) определяют жесткости корня зуба в норме, при s=0 жесткости равны нулю. Для промежуточных значений параметра s=0 жесткости изменяются в соответствии с уравнением поверхности корня зуба (1).

Проведем расчет жесткостей на примере клыка $(a_{10}=2,a_{20}=5,b_0=4,H_0=15.7\,_{\mathrm{MM}},p=0.5)$ и премоляра $(a_{10}=a_{20}=5,b=3.5,H_0=14.3\,_{\mathrm{MM}},p=0.4)$ [6]. Упругие свойства периодонта и его толщина характеризуются константами $G=46.545\,_{\mathrm{KH/M}^2}, v=0.15\,_{\mathrm{M}}\,_{\mathrm{M}}^{b_0}=1.2\,_{\mathrm{MM}}\,_{\mathrm{M}}$ [1, 7]. На рис. 2. представлены зависимости жесткостей при поступательных перемещениях корней этих зубов от параметра 5 , характеризующего атрофию костной ткани (значения жесткостей по оси ординат сформулированы в кН/м).

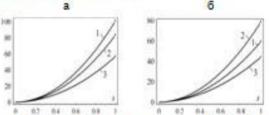


Рисунок. 2. -Зависимости жесткостей периодонта при поступательных перемещениях корнеи клыка (a)

и премоляра (б):
$$1 - \frac{6}{1}$$
: $2 - \frac{6}{1}$: $3 - \frac{6}{1}$.

Из рис. 2 (а) видно, что при различиях в значениях полуосей $a_{(0)}$ и $a_{(0)}$ жесткость $e_{(1)}$ превышает две другие жесткости. При равенстве полуосей $a_{(0)}$ и $a_{(0)}$, как следует из рис. 2 (б), жесткость $e_{(1)}$ может превышать $e_{(1)}$. В то же время, такое расположение зависимостей наблюдается, если $a_{(0)} > a_{(0)}$. Если же $a_{(0)} < a_{(0)}$, например, для резца, геометрические размеры которого характеризуются постоянными $a_{(0)} = a_{(0)} = 25$, $a_{(0)} = 3$, $a_{(0)} = 25$, $a_{(0)} = 3$, выполняется неравенство $a_{(0)} = a_{(0)} = 25$. При равенстве $a_{(0)} = a_{(0)} = 25$, $a_{(0)} = 3$, говпадают. Также отметим, что жесткости $a_{(0)} = 3$ и $a_{(0)} = 3$ и

В качестве примера расчета жесткостей при поступательных перемещениях проведем численный расчет величин ⁶ для резца, клыка и премоляра при параметре атрофии костной ткани ⁵, равном 1, 1/4, 1/2, и 3/4. Результаты вычислений приведены в таблице 1. Числовые данные прежние.

Таблица 1. Жесткости при поступательных перемещениях

Корень зуба	Парамето атрофии 3	Жесткость пои поступательных перемещениях, Н/м			
		01	02	03	
Клык	1	102159.0	84535.5	57600.4	
	1/4	57662.0	47748.9	32880.3	
	1/2	25803.3	21397.5	15040.2	

	3/4	6582.6	5481.2	4080.1
Премоляр	1	60216.4	79539.8	44697.1
	1/4	34088.3	44957.7	25668.1
	1/2	15342.9	20173.7	11875.5
	3/4	3980.1	5187.8	3319.5
Peseu	10	52506.9	45295.7	30212.1
	1/4	29611.6	25555.3	17130.1
	1/2	13228.7	11425.9	7800.7
	3/4	3358.2	2907.5	2074.1

Из таблицы 1 видно: атрофия костной ткани существенно влияет на жесткость при поступательных перемещениях, в частности для клыка жесткости костной ткани в норме в четыре раза превышает жесткость костной ткани при атрофии 50%, и в 15,5 раз при атрофии 75%. Для корней других зубов наблюдаются те же соотношения. Это свидетельствует о том, что нагрузку, прикладываемую к корню зуба в норме для его перемещения при ортодонтическом лечении, можно существенно уменьшить для достижения того же эффекта.

Жесткости при поворотах. Для нахождения жесткостей периодонта μ_{ij} и μ_{ij} , $i \neq j = \overline{1,3}$ при воротах корня зуба выделим коэффициенты при углах поворота μ_{ij} в уравнениях второй группы граничных условий. После несложных преобразований будем иметь:

$$\mu = \frac{G}{h} \iint \left(g_1(x - x^{(1)}) + g_1 y + 2(1 - y) y(x_1 - x^{(1)}) \frac{\partial F}{\partial x_1} \frac{\partial F}{\partial x_2} \right) \frac{\partial F}{\partial x_1} . \tag{9}$$

$$\mu_2 = \frac{G}{h_0} \iint \left(g_1(x_3 - x_3^{(1)})^2 + g_3(x_1 - x_1^{(1)})^2 + \frac{1}{2} (1 - y) \frac{\partial F}{\partial x_1} \frac{\partial F}{\partial x_2} (x_1 - x_1^{(1)}) (x_3 - x_3^{(1)}) \frac{\partial F}{\partial x_1} \frac{\partial F}{\partial x_2} \right) \frac{\partial F}{\partial x_1} . \tag{10}$$

$$\mu_1 = \frac{G}{h} \iint \left(g_1(x_1 - x_1^{(1)}) + g_1(x_1 - x_1^{(1)}) \left(\frac{\partial F}{\partial x_2} \right) + y \left(\frac{\partial F}{\partial x_1} \right) \right) \frac{\partial F}{\partial x_1} \frac{\partial F}{\partial x_2} \right) \frac{\partial F}{\partial x_2} . \tag{11}$$

$$\mu_2 = \mu_1 = -\frac{G}{h} \iint \left(g_1(x_1 - x_1^{(1)}) + g_2(x_1 - x_1^{(1)}) \left(\frac{\partial F}{\partial x_2} \right) + y \left(\frac{\partial F}{\partial x_1} \right) \right) - \frac{1}{2} \left(1 - y \right) \left(x_1 - x_1^{(1)} \right) \left(x_1 - x_1^{(1)} \right) \frac{\partial F}{\partial x_2} + y \left(x_1 - x_1^{(1)} \right) \left(\frac{\partial F}{\partial x_1} \right) + \frac{1}{2} \left(1 - y \right) \frac{\partial F}{\partial x_2} \left((x_1 - x_1^{(1)}) \left(x_1 - x_1^{(1)} \right) \frac{\partial F}{\partial x_2} + y \left(x_1 - x_1^{(1)} \right) \frac{\partial F}{\partial x_1} \right) \frac{\partial F}{\partial x_1} . \tag{12}$$

$$\mu_1 = \mu_1 = \frac{G}{h} \iint \left((x_1 - x_1^{(1)}) \left(x_1 - x_1^{(1)} \right) \frac{\partial F}{\partial x_1} - y \frac{\partial F}{\partial x_1} \right) + \frac{1}{2} \left((x_1 - x_1^{(1)}) \left((x_1 - x_1^{(1)}$$

$$\begin{split} \mu_{x} = \mu_{x} &= \frac{G}{k} \iint_{\mathbb{R}} \left(y(x_{1} - x_{1}^{(1)}) \left(\frac{\partial F}{\partial x_{1}} \right) - \right. \\ &\left. - (1 - y)(x_{1} - x_{1}^{(1)}) \frac{\partial F}{\partial x_{1}} \left((x_{1} - x_{1}^{(1)}) \frac{\partial F}{\partial x_{1}} - y \frac{\partial F}{\partial x_{1}} \right) + \right. \\ &\left. + (x_{1} - x_{1}^{(1)}) \left(y \left(\frac{\partial F}{\partial x_{1}} \right) + (1 - y)(x_{1} - x_{1}^{(1)}) \frac{\partial F}{\partial x_{1}} \frac{\partial F}{\partial x_{1}} + y \left(\frac{\partial F}{\partial x_{1}} \right) \right) \right) \frac{\partial F}{\partial x_{1}}. \end{split}$$

Заметим, что жесткость μ численно равна моменту сил, который необходимо приложить к зубу, чтобы повернуть его на угол ϕ = 1. Жесткости μ численно равны моменту сил, который необходимо приложить к корню зуба относительно оси χ чтобы повернуть его относительно оси χ на угол ϕ = 1

Координаты центров сопротивления найдем, воспользовавшись подходом, описанном в работе [4], согласно которому в i-ом уравнении первой группы граничных условий следует приравнять нулю коэффициенты при углах поворота φ и φ , $i \neq j \neq k = \overline{1,3}$. В результате получим:

$$\iint_{\mathbb{R}} \left(g_{1}\left(x_{1} - x_{1}^{(+)}\right) + \left(1 - \mathbf{y}\right)\left(x_{1} - x_{1}^{(+)}\right) \frac{\partial F}{\partial x_{1}} \frac{\partial F}{\partial x_{1}} \right) \frac{\partial F}{\Delta} = 0$$
, (15)

$$\iint_{F} \left(g_{2} \left(x_{1} - x_{1}^{(F)} \right) + (1 - y) y \frac{\partial F}{\partial x_{2}} \frac{\partial F}{\partial x_{1}} \right) \frac{dF}{\Delta} = 0$$
(16)

$$\iint_{\mathbb{R}} \left(g_2 \left(x_1 - x_1^{(S)} \right) + (1 - y) y \frac{\partial F}{\partial x_1} \frac{\partial F}{\partial x_2} \right) \frac{dF}{\Delta} = 0$$
(47)

$$\iint_{\mathbb{R}} \left(g_{1} \left(x_{1} - x_{1}^{(-)} \right) + (1 - y) \left(x_{1} - x_{1}^{(-)} \right) \frac{\partial F}{\partial x_{1}} \frac{\partial F}{\partial x_{1}} \right) \frac{dF}{\Delta} = 0$$
(18)

Коэффициенты при углах поворота $\Psi \vdash u \quad \Psi \vdash в$ первом и третьем уравнениях соответственно тождественно равны нулю. Также отметим, что соотношения (15)–(18) следуют из системы (6), полученной в работе [4], при $Y_u = Y_c = 0$.

В результате интегрирования уравнений (15)—(18) в обобщенных цилиндрических координатах с учетом атрофии костной ткани получим систему линейных уравнений относительно неизвестных координат центров сопротивления. После ее решения будем иметь

$$x^{(a)} = \frac{8aa (a - a)(30 + yH (1 - 3y + 3y \arctan(1/y)))}{9x(8 H + aa (yH + 20 +) - Hyr(8 + yaa))}, (19)$$

$$\chi^{(1)} = \frac{8aa[a-a](3\phi^{2}r + H(1-3p^{2}+3p^{2}\arctan(1/p))]}{9\pi\delta^{2}H + aa[H+2\phi^{2}r] - Hpr[\delta^{2}+aa])}$$
(20)

$$\begin{split} d_{i}^{(j)} &= ii \Big[ii^{2} \Big[2 - 3\rho^{2} - 12\rho^{2} \Big] \Big[a_{i}a_{i} + pi^{2} \Big] + 2a_{i}a_{i}b^{2} \Big[1 + p + \rho^{2} \Big(2 - p^{2} \Big) \Big] + \\ &+ p \sqrt{1 + p^{2}} \Big[a_{i}a_{i} \Big[3ii^{2} \Big[1 - 4p^{2} \Big] - 2ii^{2} \Big(2 - p^{2} \Big) \Big] + 3pi^{2} ii^{2} \Big[1 - 4p^{2} \Big] \Big] + \\ &+ 8ii^{2} p^{2} a_{i} \Big(p \Big[3 + 4p^{2} \Big] + \Big[1 + 4p^{2} \Big] \sqrt{1 + p^{2}} \Big[[a_{i}a_{i} + pi^{2} \Big] \Big] \Big) \Big/ \\ &+ 3 \Big[a_{i}a_{i} \Big[2i^{2} + ii^{2}_{i}a_{j} \Big] + ii^{2} i p a_{i} \Big[pi^{2} + p^{2} \Big[a_{i}a_{i} + pi^{2} \Big] \Big] \Big) \Big] + \\ &+ \frac{1}{2} a_{i}a_{i} \Big[2 - 3p^{2} - 12p^{2} \Big[pa_{i}a_{i} + pi^{2} \Big] + 2a_{i}a_{i}p^{2} \Big[1 + p + p^{2} \Big(2 - p^{2} \Big) \Big] + \\ &+ \frac{1}{2} a_{i}a_{i} \Big[3pi^{2} \Big[1 - 4p^{2} \Big] - 2ii^{2} \Big(2 - p^{2} \Big) + 3ii^{2} ii^{2} \Big[1 - 4p^{2} \Big] \Big] + \\ &+ 8ii^{2} p^{2} a_{i} \Big(p \Big[3 + 4p^{2} \Big] + \Big[1 + 4p^{2} \Big] \sqrt{1 + p^{2}} \Big[pa_{i}a_{i} + b^{2} \Big] \Big) \Big/ \\ &+ \Big[3 \Big[a_{i}a_{i} \Big[2ii^{2} + pii^{2}a_{i} \Big] + ii^{2} a_{i}a_{i} \Big[ii^{2} + p^{2} \Big[pa_{i}a_{i} + b^{2} \Big] \Big] \Big) \Big] \Big) \Big(221 \Big) \end{split}$$

Подставляя координаты центров сопротивления (19) — (22) в соотношения (9)—(14) и интегрируя полученные выражения в обобщенных цилиндрических координатах, получим искомые жесткости периодонта при поворотах корня зуба (в силу громоздкости окончательные результаты не приводятся). На рис. З приведены зависимости жесткостей μ_i и $\mu_{i,j}$, $i=\overline{1,3}$ от параметра s, характеризующего атрофию костной ткани, для клыка и премоляра (жесткости $\mu_{i,j}$ и $\mu_{i,j}$ равны нулю). Числовые данные прежние; значения жесткостей по оси ординат указаны в Н-м.

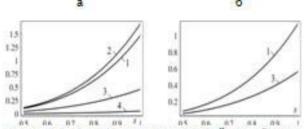


Рисунок 3.- Зависимости жесткостей периодонта при поворотах корнеи клыка (а) и премоляра (b):

Как следует из рис. 3, жесткости при поворотах меньше жесткостей существенно поступательных перемещениях. В частности, максимальное значение жесткости периодонта 📙 для клыка составляет 1.71 Н.м. Это указывает на более высокую подвижность корня зуба при поворотах, чем при поступательных перемещениях даже при незначительных нагрузках в виде моментов сил. При атрофии костной ткани более 50% (s<1/2) жесткости периодонта при поворотах практически равны нулю. При профиле сечения корня зуба с одной осью симметрии все жесткости периодонта при поворотах отличаются между собой (рис. 3 (а)), тогда как при профиле корня с двумя осями симметрии жесткость (4) оказывается равной нулю, жесткости Д и Д практически совпадают друг с другом.

Проведем численный расчет жесткостей при поворотах μ_{-i} и μ_{-i} , $i=\overline{1,3}$ для резца, премоляра и клыка при значениях параметра 5 , равном 1 , $^{1/4}$, $^{1/2}$ и $^{3/4}$. Результаты вычислений приведены в таблице 2. Числовые данные прежние.

Таблица 2. Жесткости при поворотах корней 104 зубов

Корень 2×6а	Парамето атрофии s	Жесткость пои поступательных перемещениях, Н/м			
		Tr.	F 2	P a	F 1 3
Клык	1	1.480	1.705	0.464	0.0540
	1/4	0.488	0.558	0.178	0.0194
	1/2	0.105	0.118	0.048	0.0047
	3/4	0.008	0.009	0.005	0.0005
Премоляр	5	h-1 to h-2		le 3	
	10	1.162		0.451	
	1/4	0.382		0.170	
	1/2	0.081		0.045	
	3/4	0.006		0.005	

Как следует из таблицы 2, жесткости периодонта при вращении корней зубов убывают значительно быстрее при атрофии костной ткани, чем жесткости при поступательных перемещениях. В частности, для клыка жесткость ¹¹ для зуба в норме в 14 раз превышает эту же жесткость при атрофии 50%, и в 185 раз при атрофии 75%. На основании этого можно сделать вывод о том, что при проведении ортодонтического лечения, связанного с поворотами корней зубов, следует многократно снижать нагрузку для достижения лечебного эффекта и снижения вероятности разрушения опорного аппарата и потери зуба.

Представленный в настоящей работе подход к определению жесткостей периодонта при поступательных перемещениях и поворотах корня зуба позволяет корректно учитывать влияние атрофии костной ткани на их значения. В частности, при полном отсутствии костной ткани соответствующие формулы приводят к нулевым значениям для жесткостей. Выражения для констант 6, ш ш могут быть непосредственно использованы для расчета напряжений, возникающих в периодонте при действии на зуб сосредоточенной силы и момента сил.

Литература

- Наумович, С. А. Биомеханика системы зубпериодонт / С. А. Наумович, А. Е. Крушевский. Минск: Экономические технологии, 2000, 132 с.
 Наумович, С. А. Влияние атрофии костной ткани на
- Наумович, С. А. Влияние атрофии костной ткани на изменения нормальных напряжений при поступательных движениях зуба / С. А. Наумович, А. Е. Крушевский / Современная стоматология. 1998. № 1. С. 18–20.
- Наумович, С. А. Исследование влияния атрофии костной ткани на жесткость зуба при поступательном перемещении / С. А. Наумович, А. Е. Крушевский // Современная стоматология. 1998. № 1. С. 18 -20.
- Крушевский, А. Е. Основы биомеханики мостовидных протезов / А. Е. Крушевский, С. С. Наумович // Теоретическая и прикладная механика, 2006. Вып. 20. С. 134-139.
- Лурье, А. И. Теория упругости / А. И. Лурье. М.: Наука, 1970. 940 с.
- Наумович, С. А. Антропометрические данные коронок и корней зубов и их значение в стоматологии / С. А. Наумович, Р. А. Батура, С. Н. Пархамович // Стоматологический журнал. 2002. № 2. С.21–22.
- Соснин, Г. П. Бюгельные протезы / Г. П. Соснин. Минск: Наука и техника, 1981. 344 с.