А. О. Гусенцов

ВЛИЯНИЕ ЗНАЧЕНИЙ УГЛА ВСТРЕЧИ ПУЛИ С ПРЕГРАДОЙ НА ФОРМУ ВХОДНЫХ ПУЛЕВЫХ ОГНЕСТРЕЛЬНЫХ ПОВРЕЖДЕНИЙ ЭКСПЕРИМЕНТАЛЬНЫХ МИШЕНЕЙ, ОБРАЗОВАВШИХСЯ В РЕЗУЛЬТАТЕ РИКОШЕТА ПРИ ВЫСТРЕЛЕ ИЗ 9-ММ ПИСТОЛЕТА МАКАРОВА

УО «Академия Министерства внутренних дел Республики Беларусь»

A. O. Gusentsov

THE INFLUENCE OF THE ANGLE OF THE MEETING WITH A BULLET IN THE FORM OF A BARRIER ENTRANCE GUNSHOT INJURIES EXPERIMENTAL TARGETS, RESULTING FROM A RICOCHET WHEN FIRED FROM A 9-MM MAKAROV PISTOL

Врезультате взаимодействия огнестрельного снаряда и преграды – при условии, что угол их соприкосновения приближается к острому – направление движения снаряда может изменяться, т. е. происходить его рикошетирование. Наиболее часто в роли преграды выступает одежда, предметы, находящиеся в ее карманах, обувь; преградой может явиться какой-либо предмет окружаю-

щей обстановки [2, с. 235]. При контакте с преградой пуля теряет устойчивость в полете, что может привести к ее повороту вокруг своей продольной оси, приобретению «кувыркательного» характера движения и причинению повреждения боковой поверхностью [2, с. 237]. О наличии прямой связи между большими размерами, атипичной формой входных пулевых огнестрельных ран, образованных по-

В помощь практикующему врачу

добным образом, и деформацией пуль при столкновении с преградой одним из первых высказался Т. A. Gonzales, изучая входную пулевую огнестрельную рану прямоугольной формы, возникшую в результате рикошета [6]. D. Rao описывает образование в результате рикошета ран, имевших неправильную овальную, треугольную и крестообразную формы с разрывами по краям [8]. Как следует из результатов эксперимента, проведенного Л. М. Бедриным, данные раны по своей форме могут напоминать осколочные [1], что подтверждается исследованием M. J. Leistler [8, с. 10]. Диагностическая значимость указанных признаков данного вида огнестрельных повреждений была неоднократно подтверждена результатами экспериментальных исследований, проведенных M. Jauhari [7], J. S. Denton, A. Segovia, J. A. Filkins [4], E. R. Donoghue [5], сотрудниками Академии Федерального бюро расследований США [3].

Таким образом, на основании изучения отечественной и зарубежной литературы, результатов лабораторного эксперимента нами была выдвинута гипотеза о наличии прямой связи между значениями угла встречи пули с преградой и формой входных огнестрельных повреждений.

Цель исследования – определения степени зависимости формы входных пулевых огнестрельных повреждений, образовавшихся в результате рикошета при выстреле из 9-мм пистолета Макарова, от значений угла встречи пули с преградой.

Для достижения поставленной цели использовались результаты лабораторного эксперимента, проведенного автором в 2007–2012 гг. на базе Государственного экспертнокриминалистического центра МВД Республики Беларусь: произведено 350 выстрелов из 9-мм пистолета Макарова. Выстрелы производились с двух значений допреград-

ного расстояния (ДПР) - между дульным срезом ствола оружия и поверхностью преграды (50 см и 100 см), трех значений запреградного расстояния - между преградой и экспериментальной мишенью (ЗПР) – 30 см, 40 см 50 см, с 5 значений угла встречи пули с преградой (10°, 20°, 30°, 40°, 50°). В качестве рикошетирующих преград нами использовались материалы, наиболее часто встречающиеся в объектах окружающего мира (зданиях, сооружениях, транспортных средствах и т. п.) - кирпич глиняный обыкновенный марки 100, пенобетон марки D600 класса B2,5, бетон марки М350 класса В25, сталь марки Ст45. Объектами попадания пули после рикошета (экспериментальными мишенями) являлись бязевые мишени и кожно-мышечные лоскуты, изъятые с ампутированных нижних конечностей; использование в качестве мишеней указанных объектов. Входные огнестрельные повреждения экспериментальных мишеней были подвергнуты комплексному судебно-медицинскому исследованию.

В ходе проведения визуального исследования входные пулевые огнестрельные повреждения были условно разделены на 2 группы: при наличии одного повреждения либо нескольких, равных или приблизительно равных по размерам они были названы «Основными повреждениями» (ОП); при наличии нескольких повреждений, из которых одно гораздо больше других по размерам, оно было названо «Основным повреждением», а остальные, гораздо меньшие по размерам – «Дополнительными повреждениями» (ДП). В ходе изучения экспериментальных огнестрельных повреждений установлено 34 разновидностей форм, которые были систематизированы в 4 группы, получившие условные названия: «Близкие к округлой», «Угловатые», «Удлиненные» и «Буквообразные» (табл. 1).

Таблица 1. Группировка форм огнестрельных повреждений

Группировка форм ОП и ДП	Форма ОП, установленная при изучении экспериментальных мишеней	Форма ДП, установленная при изучении экспериментальных мишеней
«Близкие к округлой»	Неправильная округлая, неправильная овальная; округлое, неправильное округлое, неправильное кольцевидное и неправильное овальное вдавление.	
«Угловатые»	Неправильная полуовальная, неправильная полукруглая, прямо- угольная, неправильная прямоугольная, четырехугольная, квад- ратная, неправильная квадратная, неправильная ромбовидная, трапециевидная, неправильная треугольная.	неправильная полуовальная, неправильная квадратная,
«Удлиненные»	Продолговатая, неправильная продолговатая, щелевидная, неправильная щелевидная, веретеновидная, неправильная веретеновидная, неправильная видная, неправильная серповидная, неправильная серповидная; линейное вдавление.	вильная веретеновидная, неправильная серповидная,
	Г-образная, неправильная Г-образная, неправильная П-образная, неправильная Т-образная, неправильная крестообразная, непра- вильная X-образная, зигзагообразная, неправильная Z-образная, неправильная F-образная.	П-образная, неправильная Н-образная, неправильная

Проведено исследование влияние значений угла встречи пули с преградой на форму основного повреждения (табл. 2).

Как видно из таблицы 2, при малых значениях угла встречи пули с преградой большинство основного повреждения имеют «Неправильную округлую» форму; с увеличением угла процентное содержание других форм увеличивается.

С использованием анализа таблиц сопряженности и расчета значения критерия Пирсона (Хи-квадрат критерия) установлена статистическая значимость различий частотных характеристик уровней формы для уровней параметра угол встречи пули с преградой (Хи-квадрат = 65,26643, p= 0,00).

Таким образом, различия в частотном распределении форм для различных значений угла статистически значимы с вероятностью больше 99% (рис. 1–4).

При анализе влияния угла встречи пули с преградой на форму ОП с учетом вида преграды статистическая значимость сохраняется. Проведено изучение совместного распределения формы ОП и угла встречи пули с преградой в зависимости от ее вида (табл. 3–5).

При анализе влияния угла на форму ОП с учетом фактора – вид объекта попадания пули – статистическая значимость сохраняется только для объекта «Мишень» (табл. 6–7).

Таким образом, с вероятностью более 99% установлена статистическая значимость различий частотных характеристик уровней формы для уровней параметра угол

В помощь практикующему врачу

Таблица 2. Совместное распределение параметров форма основного повреждения (ОП) и угол встречи пули с преградой («Угол встречи»)

	Форма ОП				
«Угол встречи»°	«Неправильная округлая»	«Угловатая»	«Удлинен- ная»	«Букво- образная»	Всего
40	66	21	3	6	96
10	45,83%	26,92%	8,57%	8,33%	
20	24	17	4	9	54
	16,67%	21,79%	11,43%	12,50%	
30	19	8	5	22	54
	13,19%	10,26%	14,29%	30,56%	
40	13	19	9	13	54
	9,03%	24,36%	25,71%	18,06%	
50	22	13	14	22	71
	15,28%	16,67%	40,00%	30,56%	
Всего	144 100,0%	78 100,0%	36 100,0%	71 100,0%	329 100,0%

«Неправильная округлая» форма ОП

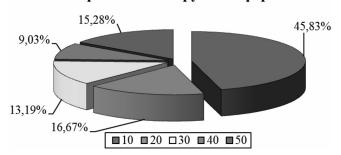


Рис. 1. Частота встречаемости «Неправильной округлой» формы входного огнестрельного отверстия при разных углах встречи пули с преградой

Рис. 2. Частота встречаемости «Угловатой» формы входного огнестрельного отверстия при разных углах встречи пули с преградой

«Удлиненная» форма ОП

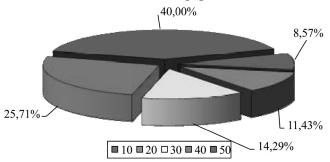


Рис. 3. Частота встречаемости «Удлиненной» формы входного огнестрельного отверстия при разных углах встречи пули с преградой

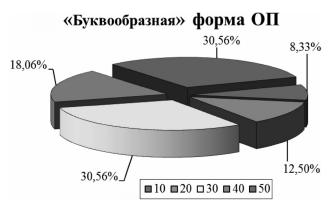


Рис. 4. Частота встречаемости «Буквообразной» форм входного огнестрельного отверстия при разных углах встречи пули с преградой

Таблица 3. Совместное распределение формы основного повреждения и значений угла встречи пули («Угол встречи») с преградой «Кирпич»

«Угол	Форма повреждения				
встречи»°	«Неправильная округлая»	«Угловатая»	«Удлинен- ная»	«Букво- образная»	Всего
10	22	2	0	0	24
10	31,43%	16,67%	0,00%	0,00%	
20	15	1	1	1	18
	21,43%	8,33%	14,29%	8,33%	
30	14	3	0	1	18
	20,00%	25,00%	0,00%	8,33%	
40	11	3	2	2	18
	15,71%	25,00%	28,57%	16,67%	
50	8	3	4	8	23
	11,43%	25,00%	57,14%	66,67%	
Всего	70	12	7	12	101
Критерий Пирсона		29,41	Уровень значимости		p= 0,003

Таблица 4. Совместное распределение формы основного повреждения и значений угла встречи пули («Угол встречи») с преградой «Бетон 2»

«Угол	Форма повреждения				
встречи»°	«Неправиль- ная округлая»	«Угловатая»	«Удлинен- ная»	«Букво- образная»	Всего
40	22	2	0	0	24
10	57,89%	7,69%	0,00%	0,00%	
20	5	6	2	5	18
	13,16%	23,08%	22,22%	17,24%	
30	3	4	1	10	18
	7,89%	15,38%	11,11%	34,48%	
40	1	8	4	5	18
	2,63%	30,77%	44,44%	17,24%	
50	7	6	2	9	24
	18,42%	23,08%	22,22%	31,03%	
Всего	38	26	9	29	102
Критерий Пирсона		50,94380	Уровень з	начимости	p= 0,000

встречи пули с преградой (Хи-квадрат = 65,26643, p= 0,00). Необходимо отметить, что при значении угла встречи пули с преградой 10° большинство основного повреждения имеют «Неправильную округлую» форму (45,83%), а «Удлиненная» и «Буквообразная» формы составляют 8,57% и 8,33% соответственно. С увеличением значений угла встречи до 50° встречаемость «Неправильной округлой» формы ОП

Таблица 5. Совместное распределение формы основного повреждения и значений угла встречи пули («Угол встречи») с преградой «Металл»

\/	Форма повреждения				
«Угол встречи»°	«Неправильная округлая»	«Углова- тая»	«Удлинен- ная»	«Букво- образная»	Всего
40	13	10	1	0	24
10	48,15%	30,30%	5,88%	0,00%	
20	4	10	1	3	18
	14,81%	30,30%	5,88%	12,00%	
30	2	1	4	11	18
	7,41%	3,03%	23,53%	44,00%	
40	1	8	3	6	18
	3,70%	24,24%	17,65%	24,00%	
50	7	4	8	5	24
	25,93%	12,12%	47,06%	20,00%	
Всего	27	33	17	25	102
Критерий Пирсона		46,78828	Уровень значимости		p= 0,000

Таблица 6. Результаты анализа влияния значений угла встречи пули с преградой («Угол встречи») на форму основного повреждения при объекте попадания пули «Мишень»

«Угол встречи»°					
	«Неправиль- ная округлая»	«Углова- тая»	«Удлинен- ная»	«Букво- образная»	Всего
40	47	17	2	6	72
10	41,96%	24,29%	6,06%	8,33%	
20	24	17	4	9	54
	21,43%	24,29%	12,12%	12,50%	
30	19	8	5	22	54
	16,96%	11,43%	15,15%	30,56%	
40	13	19	9	13	54
	11,61%	27,14%	27,27%	18,06%	
50	9	9	13	22	53
	8,04%	12,86%	39,39%	30,56%	
Всего	72	112	70	33	287
Критерий Пирсона		65,39291	Уровень з	начимости	p= 0,0000

снижается до 15,28%, а «Удлиненной» и «Буквообразной» форм значительно возрастает до 40% и 30,56% соответственно. Статистическая значимость влияния угла встречи пули с преградой на форму основного повреждения сохраняется при анализе каждого вида преграды в отдельности.

Результаты лабораторного эксперимента и последующего комплексного судебно-медицинского исследования

В помощь практикующему врачу

Таблица 7. Результаты анализа влияния значений угла встречи пули с преградой («Угол встречи») на форму основного повреждения при объекте попадания пули «Лоскут»

Vess				
«Угол встречи»°	«Неправиль- ная округлая»	«Угловатая»	«Удлиненная»	Всего
10	19	4	1	24
10	59,38%	50,00%	50,00%	
50	13	4	1	18
	40,63%	50,00%	50,00%	
Всего	Всего 32		2	42
Критерий Пирсона		0,2734375	Уровень значимости	p=,87222

экспериментальных мишеней установили наличие прямой связи между значениями угла встречи пули с преградой (в исследуемом диапазоне – 10°, 20°, 30°, 40°, 50°) и формой входных огнестрельных повреждений, образовавшихся в результате рикошета при выстреле из 9-мм пистолета Макарова.

Литература

- 1. Бедрин, Л. М. Об особенностях повреждений при обычных и некоторых своеобразных поражениях пулей винтовки: автореф. дис. ... канд. мед. наук: 14.00.24 / Л. М. Бедрин; Воронеж. гос. мед. инст. Воронеж. 1951. 21 с.
- 2. Попов, В. Л. Судебно-медицинская баллистика / В. Л. Попов, В. Б. Шигеев, Л. Е. Кузнецов. СПб: Гиппократ, 2002. 656 с.
- 3. Bouncing Bullets. Firearms staff, FBI Academy. FBI Law Enforcement Bulletin. 1969. Vol. 38. No. 10. P. 2–6. 20–23.
- 4. Denton, J. S. Practical Pathology of Gunshot Wounds / J. S. Denton, A. Segovia, J. A. Filkins // Arch. Pathol. Lab. Med. 2006. Vol. 130. P. 1284.
- 5. *Donoghue, E. R.* Atypical Gunshot Wounds of Entrance: An Empirical Study / E. R. Donoghue // Journal of Forensic sciences. 1984. Vol. 29. № 2. P. 379–388.
- 6. Gonzales, T. A. Wounds by Firearms in Civil Life. / T. A. Gonzales // American Journal of Surgery. 1934. Vol. 26, No. 1. P. 43–52.
- 7. Jauhari, M. Bullet Ricochet from Metal Plates / M. Jauhari // Journal of Criminal Law. Criminology and Police Science. 1969. Vol. 60. No. 3. P. 387–394.
- 8. Leistler, M. J. Tötungsdelikte durch Schusswaffen aus dem Sektionsgut der Rechtsmedizin Münster 1993 1999 Dissertation / M. J. Leistler. München. 2006. 93 p.
- 9. Rao, D. Firearm injuries / D. Rao // [Электронный ресурс]. 2012. Режим доступа: http://www.forensicpathologyonline.com/index.php?option=com_content&view=article&id=62&Itemid=88. Дата доступа: 18.01.2012.