DOI: https://doi.org/10.51922/1818-426X.2025.1.19

А. В. Бойко, М. М Селицкий, Э. В. Вист

ДЛИТЕЛЬНЫЕ НЕВРОЛОГИЧЕСКИЕ НАРУШЕНИЯ ИНДУЦИРОВАННЫЕ SARS-COV-2. АСПЕКТЫ ПРОФИЛАКТИКИ, ДИАГНОСТИКИ И ЛЕЧЕНИЯ

Институт повышения квалификации и переподготовки кадров здравоохранения УО «Белорусский государственный медицинский университет», Минск, Беларусь

Развитие науки ведёт к лучшему пониманию механизмов, лежащих в основе функционирования организма человека. До мая 2023 года бетакоронавирус В, SARS-CoV-2 являлся мировой чрезвычайной угрозой в области здравоохранения. Данные свидетельствуют, что многие пациенты после перенесенного COVID-19 страдают от множества симптомов, сохраняющихся после острого события иногда и несколько лет. Это явление называется пост-COVID-синдромом (ПКС) или длительным COVID. В данной статье приведен ряд клинически важных научных данных, посвященных профилактике, диагностике и лечению неврологических нарушений, вызванных SARS-CoV-2 в пост COVID период. Демонстрируется важность тщательного сбора анамнеза развития заболевания с поиском возможной связи текущих симптомов и предшествовавшей им «банальной» ОРЗ. Показана важность комплексного подхода к диагностике и лечению симптомов длительного COVID.

Ключевые слова: SARS-CoV-2, длительный COVID, неврологические заболевания, профилактика, диагностика и лечение.

A. V. Boika, M. M. Sialitski, E. V. Vist

LONG-TERM NEUROLOGICAL DISORDERS INDUCED BY SARS-COV-2. ASPECTS OF PREVENTION, DIAGNOSIS AND TREATMENT.

Advances in science are leading to a better understanding of the mechanisms underlying the functioning of the human body. Until May 2023, betacoronavirus B, SARS-CoV-2, was a global public health emergency. Evidence suggests that many patients with COVID-19 suffer from multiple symptoms that persist beyond the acute event for several years. This phenomenon is called post-COVID syndrome (PCS) or long COVID. This article provides some clinically important scientific data on the prevention, diagnosis, and treatment of neurological disorders caused by SARS-CoV-2 in the post-COVID period. It demonstrates the importance of a thorough history of the disease development with a search for a possible connection between current symptoms and the "common" ARI that preceded them. The importance of an integrated approach to the diagnosis and treatment of symptoms of long COVID is shown.

Key words: SARS-CoV-2, long COVID, neurological diseases, prevention, diagnosis treatment.

еуклонное и поступательное развитие науки способствует лучшему пониманию механизмов, лежащих в основе функционирования организма человека. Данный факт в ряде случаев позволяет даже планировать профилак-

тические мероприятия, направленные на минимизацию негативных воздействий факторов окружающей среды. Влияние биологических, инфекционных агентов является одним из часто встречающихся. Несмотря на то, что с мая

□ Обзоры и лекции

2023 года COVID-19 больше не является мировой чрезвычайной угрозой в области здравоохранения, бетакоронавирус B, SARS-CoV-2 никуда не исчез, а во всем мире перешел в разряд «обычных» простудных заболеваний. Люди продолжают контактировать с этим возбудителем, который, как и все инфекционные агенты, постоянно мутирует, что создает постоянное напряжение для иммунной системы человека. В настоящее время считается, что эволюция вируса, а также разработка и доступность новых вакцин существенно изменили естественную историю COVID-19 [1]. Во время пандемии COVID-19 было собрано огромное количество данных. При этом знания об этом заболевании продолжают накапливаться. Сегодня врачи столкнулись с новой проблемой: многие пациенты после перенесенного COVID-19 страдают от множества симптомов, сохраняющихся после острого события. Это явление определялось по-разному, это и пост-COVID-синдром (ПКС) или длительный COVID. ПКС относится к широкому спектру новых или продолжающихся симптомов, которые могут сохраняться неделями, месяцами или дольше после заражения SARS-CoV-2 и могут ухудшаться при физической или умственной активности. Обзор 57 исследований показал, что более половины пациентов после COVID-19 испытывали эти состояния в течение 6 месяцев после начала инфекции [2]. К наиболее распространенным симптомам относились: нарушения со стороны двигательной активности, легочные проявления и расстройства психического здоровья [3].

В данной статье мы хотели бы привести ряд клинически важных научных данных, посвященных профилактике, диагностике и лечению неврологических нарушений, вызванных SARS-CoV-2 в пост COVID период.

Международное научное сообщество единодушно в том, что острые неврологические проявления взаимодействия SARS-CoV-2 с организмом человека развиваются в результате прямого воздействия вируса на нервную систему или в виде иммуноопосредованного заболевания, а также коагулопатии. Согласно общепринятому стандартизированному подходу, признаки, симптомы и состояния ПКС учитываются через четыре недели или более после начальной фазы инфекции. Эти проявления преимущественно мультисистемные, носят рецидивноремиттирующий характер, но могут также прогрессировать или ухудшаться с течением времени, а иногда и с развитием тяжелых и опасных для жизни состояний даже через месяцы или годы после заражения. При формулировании диагноза стоит учитывать, что длительный COVID – это не одно заболевание, он представляет собой множество потенциально перекрывающихся состояний, вероятно, с разными биологическими причинами, пересекающимися ведущими звеньями патогенеза и разными наборами факторов риска и исходов. Ряд авторов параллельно с употреблением термина длительный COVID указывают на то, что у ряда лиц после SARS-CoV-2 инфекции тяжелой степени тяжести имеет место симптомокомплекс, напоминающий по своим проявлениям стойкий воспалительный, иммуносупрессивный и катаболический синдром (ПИКС, англ. a persistent inflammatory, immunosuppressive, and catabolic syndrome (PICS)), что указывает преимущественно на нарушение иммунной системы при хронизации процесса. Это состояние, вероятно, обусловлено взаимодействием SARS-CoV-2 с организмом человека, что проявляется, как правило, цитокиновой бурей различной степени выраженности, вызванной длительным выбросом эндогенных факторов, молекул, связанных с иммунным ответом или с опасностью, в том числе и стрессом из инфицированных вирусом органов. К сожалению, точных данных о хроническом воспалении у выживших после COVID-19 нет; однако эта теория заслуживает доверия, учитывая корреляцию между тяжелой инфекцией и стойким воспалительным, иммуносупрессивным и катаболическим синдромом. Хотя до сих пор патофизиология долгосрочного COVID все еще неясна, возможными механизмами могут быть иммунная дисрегуляция, эндотелиальная дисфункция, аутоиммунитет, скрытая персистенция вируса и активация коагуляции.

Заслуживает особого внимания тот факт, что обсервационные исследования во всем мире демонстрируют высокую частоту симптомов долгосрочного COVID и через один год, и даже более после острого эпизода. Так исследование в течение 12 месяцев на группе из 1733 пациентов, выписанных из больницы в Ухане, Китай, в 2020 году [2]. показало, что через 6 и 12 месяцев после острой инфекции у 68 % и 49 % (p < 0,0001) выживших после Covid-19 наблюдался хотя бы один симптом последствий соответственно. Результаты показали, что 26 и 30 % (p = 0,014) испытывали трудности со сном, а 23 % и 26 % (p = 0,015) испытывали тре-

вогу или депрессию соответственно. Они также обнаружили, что через год по сравнению с мужчинами у женщин было отношение шансов 1,43 (95 % ДИ 1,04-1,96) для усталости или мышечной слабости, отношение шансов 2,00 (1,48-2,69) для тревоги или депрессии. Наиболее существенное изменение, наблюдаемое в этом исследовании, улучшение симптоматических последствий через 6 месяцев, контрастирует с исследованием Wu et al., которые обнаружили, что подгруппа госпитализированных пациентов, которым не требовалась искусственная вентиляция легких, имела стойкие физиологические и рентгенологические изменения через 1 год после перенесенного заболевания [3]. Данные метаанализа показывают наличие симптомов пост-COVID у 30 % пациентов даже через два года после COVID-19. Усталость, когнитивные расстройства и боль были наиболее распространенными симптомами. Также все еще присутствовали через два года после Covid-19 и психологические нарушения, а также проблемы со сном.

Подход к диагностике клинических симптомов длительного COVID основывается на представлении о том, что полифакторность патогенеза его клинических проявлений косвенно свидетельствует о крайней сложности, а может даже и о невозможности обнаружения какого-либо одного лабораторного и/или инструментального показателя подтверждающего наличие ПКС у пациента. Также, иммунные, коагуляционные нарушения являются преимущественно неспецифическими и могут встречать как при COVID-19, так и при других заболеваниях. Даже исследование распространенности PHK SARS-CoV-2 у пациентов с симптомами ПКС в первые два месяца после заражения показало противоречивые результаты, поскольку ее выявление колебалось от 5 до 59 %, в зависимости от протестированного образца, и PHK SARS-CoV-2 была идентифицирована и у переболевших COVID-19, без симптомов ПКС [4]. Было показано, что при ПКС, вирус больше не присутствует в полости носа, однако вирусный белок и/или РНК обнаруживаются в репродуктивной и сердечно-сосудистой системе, головном мозге, мышцах, глазах, обонятельной слизистой оболочке, лимфатических узлах, аппендиксе, ткане молочной железы, печени и легких, плазме, кишечной микробиоме и моче [5].

Международные рекомендации для установления диагноза ПКС включают проведение электрокардиограммы и трансторакальной эхокардиограммы, а также лабораторные исследования на СРБ, тропонин-Т, провоспалительные маркеры (TNF-α, CCL5 (англ. C-C motif chemokine ligand 5), IL-6, IL-8, IL -18 и уровень интерферона-гамма). Более того, при мониторинге уровней D-димера было выявлено состояние гиперкоагуляции у пациентов с ПКС [6], в то время как другие исследования показали, что у ряда лиц именно реактивация латентных вирусов или хроническое воспаление приводят к симптомам ПКС. У людей с симптомами ПКС также наблюдались хронические воспалительные и аутоиммунные состояния из-за высокого уровня моноцитов и низкого уровня циркулирующих cDC1, дендритных клеток 1-го типа, играющих роль в иммунитете и вирусной инфекции.

Было показано в результате недавних исследований, что вирус захватывает транскрипционный/трансляционный механизм клетки-хозяина во время острой инфекции, производя большое количество вирусных белков и РНК, одновременно отключая трансляцию информационной РНК хозяина [5]. Например, стойкие изменения в генах транскриптома 446 крови продемонстрировали значительную дифференциальную экспрессию у лиц, направленных на стационарное лечение по поводу длительного COVID. Хотя многие исследователи отмечают регресс нарушений регуляции транскрипции примерно через 6 месяцев после заражения, это не относится к людям с длительными симптомами COVID [7]. Также анализ транскриптома у пациентов с длительным COVID выявил ряд более специфических изменений.

У людей, страдающих ПКС, анализ >6500 белков в 268 продольных образцах при мультимодальном протеомном анализе сыворотки крови в течение 12 месяцев после подтверждения инфекции тяжелого острого Covid-19, выявил нарушение регуляции активации системы комплемента, механизма врожденной иммунной защиты и гомеостаза [8]. Активный ПКС характеризовался дисрегуляцией терминальной системы комплемента и продолжающейся активацией альтернативного и классического путей комплемента, причем последний связан с увеличением титров антител против нескольких герпесвирусов, возможно, стимулирующих этот путь. Кроме того, при ПКС были повышены маркеры гемолиза, повреждения тканей, активации тромбоцитов и моноцитарно-тромбоцитарных агрегатов. Машинное обучение подтвердило, что

□ Обзоры и лекции

белки комплемента и тромбовоспалительные белки являются главными биомаркерами, что требует последующего диагностического и терапевтического исследования этих систем [8].

В настоящее время нет научно обоснованных рекомендаций по профилактике ПКС. Повидимому, теоретические предпосылки к их формированию не должны сильно отличаться от базовых, стандартных рекомендаций по системе профилактики любого инфекционного заболевания. И действительно, некоторые исследования сообщают о более низкой частоте длительных симптомов COVID у вакцинированных пациентов, а недавнее проспективное исследование показало снижение распространенности РСС у вакцинированных пациентов с тенденцией в зависимости от дозы [9].

Также назначение специфических противовирусных препаратов (пероральные противовирусные препараты (нирмарелвир/ритонавир и молнупиравир (nirmatrelvir/ritonavir and molnupiravir), внутривенное кратковременное лечение ремдесивиром и моноклональные антитела против SARS-CoV-2 (mAbs) на ранних стадиях острого COVID-19 приводило к более низкой частоте и меньшей выраженности ПКС [10]. При этом добавление противовирусных препаратам к стандартному лечению у пациентов с легкой и умеренной формой COVID-19 без учета длительности заболевания не вело к быстрому разрешению респираторных симптомов или снижению риска последующего длительного течения COVID-19.

Глюкокортикостероиды, воздействуя на аутоиммунный компонент, помогают ускорить выздоровление избранной группы пациентов с длительным диагнозом COVID. В то же время в клинической практике медицинские работники должны быть осторожны с иммуносупрессивными эффектами стероидов, такими как реактивация туберкулеза, особенно в эндемичных по туберкулезу странах.

Несмотря на то, что терапия плазмой выздоравливающих не продемонстрировала длительного влияния на симптомы ранних по срокам последствиях SARS-CoV-2 или общее состояние здоровья по сравнению с плацебо [11], ряд исследователей считают, что разработка продуктов, полученных из крови, являются важными стратегиями борьбы с инфекцией SARS-CoV-2 или длительным течением COVID. Это могут быть продукты крови, нацеленные на SARS-CoV-2

и позволяющие обеспечить немедленный контроль над вирусной инфекцией в краткосрочной перспективе. К ним относятся: плазма выздоравливающих после COVID-19, гипериммунный глобулин после COVID-19 и рекомбинантный анти-SARS-CoV-2-нейтрализующий иммуноглобулин G. Продукты крови, не нацеленные на SARS-CoV-2, представлены внутривенным иммуноглобулином и сывороточным альбумин человека, которые проявляют противовоспалительные, иммуномодулирующие, антиоксидантные и антикоагулянтные свойства. Рациональное использование этих продуктов может быть полезным для ряда групп пациентов. Однако надо учитывать тот факт, что хроническая инфекция SARS-CoV-2 приводит к вирусной эволюции и снижению чувствительности к нейтрализующим антителам у иммуносупрессированного человека, лечившегося реконвалесцентной плазмой. При этом после двух курсов ремдесивира в течение первых 57 дней общая структура вирусной популяции у него практически не изменилась [12]. Также у пациентов с иммунодефицитом и другие противовирусные специфические методы лечения (противовирусные препараты (например, ремдесивир) и моноклональные антитела (например, тиксагевимаб/цилгавимаб и бебтеловимаб/emdesivir and mAbs (e.g., tixagevimab/cilgavimab and bebtelovimab)) были связаны с накоплением конвергентных спайковых мутаций [13].

Заслуживает внимание информация об эффективности немедикаментозной активации внутренних защитных механизмов. Было показано, что более высокий уровень регулярной физической активности может снизить риск повторного заражения SARS-CoV-2 и количество психических и неврологических симптомов при длительном COVID, что лежит в основе важности регулярной физической активности [14]. Также с пользой для пациентов может применяться гипербарическая кислородная терапия (ГБО).

Стоит констатировать, что в настоящее время большая часть населения мира имеет определенный уровень адаптивного иммунитета к SARS-CoV-2, вызванного воздействием вируса (естественная инфекция), вакцинацией или комбинацией того и другого (гибридный иммунитет). Ключевые вопросы, которые часто возникают, касаются продолжительности и уровня защиты, на которую может рассчитывать чело-

век, исходя из индивидуальной истории заражения и вакцинации. Требуют дальнейшего изучения данные о связи между растущим числом повторных инфекций SARS-CoV-2 и параллельной пандемией длительного COVID. Тяжесть повторных инфекций во многом зависит от тяжести первоначального эпизода; в свою очередь, это определяется как сочетанием генетических факторов, особенно связанных с врожденным иммунным ответом, так и патогенностью конкретного варианта, особенно его способностью инфицировать и индуцировать образование синцитий в нижних дыхательных путях [1]. Кумулятивный риск длительного течения COVID, а также различных сердечных, легочных или неврологических осложнений увеличивается пропорционально количеству инфекций SARS-CoV-2, прежде всего у пожилых людей. Поэтому ожидается, что число длительных случаев заболевания COVID в будущем останется высоким. Реинфекции, очевидно, увеличивают вероятность длительного течения COVID, но в меньшей степени, если они легкие или бессимптомные, как у детей и подростков.

На данный момент профилактика распространения длительного COVID должна быть основана, прежде всего, на предотвращении случаев повторных заражений SARS-CoV-2, в основном за счет принятия ряда как нефармацевтических, так и фармацевтических мер. Тут одним из перспективных направлений можно рассматривать стратегию перепрофилирования лекарств для обнаружения дополнительных препаратов как против COVID-19, так и его длительных проявлений. Актуальность активных научных исследований в этой области базируется на том, что ряд исследователей предполагает появление резистентных к тому или иному виду терапии штаммов SARS-CoV-2 [15]. Такие известные лекарства, в том числе Нирмарелвир во время острой фазы COVID-19 и Метформин, проходят оценку и показывают многообещающие результаты по снижению риска неблагоприятных последствий для здоровья, связанных с длительным течением COVID.

Для широкого применения в клинической практике может быть рекомендовано добавление к схеме лечения витаминов, таких как В2, Е, С и антиоксидантов, которые могут представлять собой потенциальную терапевтическую стратегию нейрореабилитации. В настоящее время при подборе методов терапии стоит учи-

тывать полученные при научных исследованиях доказательства, что некоторые фармацевтические методы лечения, такие как антидепрессанты, не имеют эффекта, а нефармацевтические процедуры, такие как когнитивно-поведенческая терапия, терапия, связанная со ступенчатыми физическими упражнениями, реабилитация или иглоукалывание, показали противоречивые результаты [16].

Введение нирмарелвир-ритонавира применялось у пациентов с персистирующим SARS COV-2, поскольку некоторые исследования предполагают, что персистенция SARS-CoV-2 в тканях и особенно в кишечном микробиоме и вироме может быть вовлечена в патогенез ПКС. Использование валацикловира, валганцикловира, фамцикловира для реактивации инфекций, вызванных вирусом Эпштейна-Барра, цитомегаловирусом и вирусом ветряной оспы, может помочь предотвратить неврологические проявления ПКС, поскольку реактивированные вирусы герпеса также связаны с синдромом хронической усталости/миалгическим энцефаломиелитом (СХУ/МЭ) [17]. Было показано, что коэнзим Q10 и d-рибоза также играют полезную роль в лечении астении и неврологических симптомов, обнаруженных при СХУ/МЭ. Антикоагулянты могут предотвратить аномальное свертывание крови и могут быть полезны при ПКС, при этом некоторые исследования рекомендуют даже тройную терапию антикоагулянтами. Считается, что первичный эндотелиит COVID-19 часто может развиться в более сложный лейкоцитокластический и гипериммунный васкулит. В сосудах среднего/большого размера это соответствует эндотелиальной дисфункции, приводящей к ускоренному прогрессированию уже существующих атеросклеротических бляшек за счет повышенного отложения тромбоцитов, циркулирующих воспалительных клеток и белков. А сопутствующие дисрегулируемые иммунные и прокоагулянтные состояния могут напрямую вызывать тромбоэмболические артериальные или венозные осложнения. Стоит помнить, что хотя васкулит и манифестирует у большинства пациентов в виде острого нарушения мозгового кровообращения по ишемическому типу, но у 25-30 % лиц могут развивать рецидивирующие геморрагические осложнения. Аферез также может помочь устранить микрососудистые свертывания крови и, как было показано, снижает количество аутоанти-

□ Обзоры и лекции

тел при СХУ/МЭ, но высокая стоимость ограничивает его широкое использование. Стоит подчеркнуть, что по результатам ретроспективного когортного исследования COVID-19 был связан со значительным риском аутоиммунных и аутовоспалительных заболеваний соединительной ткани (в том числе и васкулиты, саркоидоз и анкилозирующий спондилит), что указывает на то, что долгосрочное ведение пациентов с COVID-19 должно включать оценку таких заболеваний [18].

При планировании последующих научных исследований заслуживает внимания и последующего изучения, развития предложенный рядом авторов подход к выделению шести подтипов ПКС: нетяжелые мультиорганные последствия COVID-19 (англ. non-severe COVID-19 multi-organ sequelae), последствия в виде легочного фиброза (англ. pulmonary fibrosis sequelae), СХУ/МЭ, синдром постуральной ортостатической тахикардии (англ. postural orthostatic tachycardia syndrome), синдром после интенсивной терапии (англ. post-intensive care syndrome, PICS) и медицинские или клинические последствия (англ. medical or clinical sequelae (MCS)) [19].

Массовые профилактические мероприятие не потеряли своей актуальности ввиду сохраняющейся важности здорового образа жизни и в постковидное время. Результаты научного исследования свидетельствуют, что благоприятный образ жизни (6-10 здоровых факторов; 46,4 %) связан с 36 % более низким риском мультисистемных последствий (НR, 0,64; 95% ДИ, 0,58-0,69; ARR в 210 дней, 7,08 %; 95 % ДИ, 5,98-8,09) по сравнению с неблагоприятным образом жизни (0-4 фактора; 12,3 %). Снижение риска охватывает все 10 систем органов, включая сердечно-сосудистую, коагуляционную, метаболическую, желудочно-кишечную, почечную, психическое здоровье, опорно-двигательный аппарат, респираторные расстройства и усталость. Авторы считают, что такой благоприятный эффект обусловлен прямым влиянием образа жизни независимо от соответствующих сопутствующих заболеваний до COVID-19 (71 % для любых последствий) [20].

Заключение. Большая часть населения мира в настоящее время имеет определенный уровень защиты к SARS-CoV-2. Дальнейшие вопросы, которые сейчас стоят перед человечеством связаны в основном с усовершенствованием диагностики и лечения клинических, лабораторных и, возможно, инструментальных

проявлений взаимодействия различных штаммов SARS-CoV-2 с организмом пациентов. Дальнейших успех в минимизации экономических и демографических потерь, связанных с болезнями, симптомами и проявлениями SARS-CoV-2 определяется не только работой системы здравоохранения и научно обоснованными мероприятиями на государственном уровне, но и индивидуальным соблюдением правил здорового образа жизни каждым гражданином.

Литература - References

- 1. Arkhipova-Jenkins, I. Antibody response after SARS-CoV-2 infection and implications for immunity: a rapid living review / I. Arkhipova-Jenkins, M. Helfand, C. Armstrong, E. Gean, J. Anderson, R. A. Paynter [et al.] // Ann Intern Med. 2021. Vol. 174. P. 811–21. doi: 10.7326/m20-7547.
- 2. Huang, L. Huang L., Yao Q., Gu X., Wang Q., Ren L., Wang Y., Hu P., Guo L., Liu M., Xu J., et al. 1-year outcomes in hospital survivors with COVID-19: A longitudinal cohort study. Lancet. Lancet. 2021. Vol. 398. P. 747–758. doi: 10.1016/S0140-6736(21)01755-4.
- 3. Wu, X., Liu X., Zhou Y., Yu H., Li R., Zhan Q., Ni F., Fang S., Lu Y., Ding X. et al. 3-month, 6-month, 9-month, and 12-month respiratory outcomes in patients following COVID-19-related hospitalization: A prospective study // Lancet Respir. Med. 2021. N 9. P. 747–754. doi: 10.1016/S2213-2600(21)00174-0.
- 4. Fernández-de-Las-Peñas, C., Torres-Macho J., Macasaet R., Velasco J. V., Ver A. T., Culasino Carandang T. H. D., Guerrero J. J., Franco-Moreno A., Chung W., Notarte K. I. Presence of SARS-CoV-2 RNA in COVID-19 survivors with post-COVID symptoms: a systematic review of the literature // Clin Chem Lab Med. 2024. Vol. 62(6). P. 1044–1052. doi: 10.1515/cclm-2024-0036.
- 5. *Mantovani*, A., Concetta Morrone M., Patrono C., Santoro M. G., Schiaffino S., Remuzzi G. et al. Long Covid: where we stand and challenges ahead // Cell Death Differ. 2022. № 29. P. 1891–900. doi: 10.1038/S41418-022-01052-6.
- 6. Pretorius, E., Vlok M., Venter C., Bezuidenhout J. A., Laubscher G. J., Steenkamp J. et al.. Persistent clotting protein pathology in Long COVID/Post-Acute Sequelae of COVID-19 (PASC) is accompanied by increased levels of antiplasmin // Cardiovasc Diabetol. 2021. Vol. 20. doi: 10.1186/S12933-021-01359-7.
- 7. Ryan, F. J., Hope C. M., Masavuli M. G., Lynn M. A., Mekonnen Z. A., Yeow A. E. et al. Long-term perturbation of the peripheral immune system months after SARS-CoV-2 infection // BMC Med. 2022. Vol. 20. P. 26. doi: 10.1186/s12916-021-02228-6 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- 8. Cervia-Hasler, Carlo et al. "Persistent complement dysregulation with signs of thromboinflammation in active Long Covid" // Science (New York, N. Y.). 2024. Vol. 383. P. 6680: doi:10.1126/science.adg7942.
- 9. Watanabe, A., Iwagami M., Yasuhara J., Takagi H., Kuno T. Protective effect of COVID-19 vaccination against long COVID syndrome: A systematic review and meta-

Reviews and lectures

analysis // Vaccine. - 2023. - Vol. 41(11). - P. 1783-1790. doi: 10.1016/j.vaccine.2023.02.008. Epub 2023 Feb 8.

10. Bertuccio, P., Degli Antoni M., Minisci D., Amadasi S., Castelli F., Odone A., Quiros-Roldan E. The impact of early therapies for COVID-19 on death, hospitalization and persisting symptoms: a retrospective study // Infection. – 2023. – Vol. 51(6). – P. 1633–1644. doi: 10.1007/s15010-023-02028-5. Epub 2023 Apr 6. PMID: 37024626; PMCID: PMC10079146.

11. Yoon, H., Li Y., Goldfeld K. S., Cobb G. F., Sturm-Reganato C. L., Ostrosky-Zeichner L., Jayaweera D. T., Philley J. V., Desruisseaux M. S., Keller M. J., Hochman J. S., Pirofski L. A., Ortigoza M. B. CONTAIN-Extend Study Group. COVID-19 Convalescent Plasma Therapy: Long-term Implications // Open Forum Infect Dis. – 2023. – № 11(1). – P. 686. doi: 10.1093/ofid/ofad686.

12. Kemp, S. A., Collier D. A., Datir R. P., Ferreira T. M., Gayed S., Jahun A., Hosmillo M., Rees-Spear C., Mlcochova P., Lumb I. U., Roberts D. J., Chandra A., Temperton N. CITIID-NIHR BioResource COVID-19 Collaboration; COVID-19 Genomics UK (COG-UK) Consortium; Sharrocks K., Blane E., Modis Y., Leigh K. E., Briggs J. A. G., van Gils M. J., Smith K. G. C., Bradley J. R., Smith C., Doffinger R., Ceron-Gutierrez L., Barcenas-Morales G., Pollock D. D., Goldstein R. A., Smielewska A., Skittrall J. P., Gouliouris T., Goodfellow I. G., Gkrania-Klotsas E., Illingworth C. J. R., McCoy L. E., Gupta R. K. SARS-CoV-2 evolution during treatment of chronic infection // Nature. - 2021. -Vol. 592(7853). - P. 277-282. doi: 10.1038/s41586-021-03291-y. Epub 2021 Feb 5. Erratum in: Nature. - 2022. -Vol. 608(7922). - P. E23. doi: 10.1038/s41586-022-05104-2.

13. Feng, S., Reid G. E., Clark N. M., Harrington A., Uprichard S. L., Baker S. C. Evidence of SARS-CoV-2 convergent evolution in immunosuppressed patients treated with antiviral therapies // Virol J. – 2024. – № 21(1). – P. 105. doi: 10.1186/s12985-024-02378-y. PMID: 38715113; PMCID: PMC11075269.

- 14. *Taká*cs, J., Deák D., Koller A. Higher level of physical activity reduces mental and neurological symptoms during and two years after COVID-19 infection in young women // Sci Rep. 2024. № 14(1). P. 6927. doi: 10.1038/s41598-024-57646-2.
- 15. Anastassopoulou, C., Hatziantoniou S., Boufidou F., Patrinos G. P., Tsakris A. The Role of Oral Antivirals for COVID-19 Treatment in Shaping the Pandemic Landscape // J. Pers. Med. 2022. № 12. P. 439. doi: 10.3390/jpm12030439.
- 16. Gheorghita, R., Soldanescu I., Lobiuc A., Caliman Sturdza O. A., Filip R. Constantinescu-Bercu A., Dimian M., Mangul S. and Covasa M. The knowns and unknowns of long COVID-19: from mechanisms to therapeutical approaches // Front. Immunol. 2024. № 15. P. 1344086. doi: 10.3389/fimmu.2024.1344086.
- 17. Zubchenko, S., Kril I., Nadizhko O., Matsyura O., Chopyak V. Herpesvirus infections and post-COVID-19 manifestations: a pilot observational study // Rheumatol Int. 2022. Vol. 42. P. 1523–30. doi: 10.1007/s00296-022-05146-9.
- 18. Lim, S. H., Ju H. J., Han J. H., Lee J. H., Lee W. S., Bae J. M., Lee S. Autoimmune and Autoinflammatory Connective Tissue Disorders Following COVID-19 // JAMA Netw Open. 2023. № 6(10). P. e2336120. doi: 10.1001/jamanetworkopen.2023.36120.
- 19. Yong, S. J., Liu S. Proposed subtypes of post-COVID-19 syndrome (or long-COVID) and their respective potential therapies // Rev Med Virol. 2022. № 32(4). P. e2315. doi: 10.1002/rmv.2315.
- 20. Wang, Y., Su B., Alcalde-Herraiz M., Barclay N. L., Tian Y., Li C., Wareham N. J., Paredes R., Xie J., Prieto-Alhambra D. Modifiable lifestyle factors and the risk of post-COVID-19 multisystem sequelae, hospitalization, and death // Nat Commun. 2024. № 15(1). P. 6363. doi: 10.1038/s41467-024-50495-7.

Поступила 06.09.2024 г.