3.Б.Квачева 1 ,В. И. Вотяков 1 ,Л. П. Титов 1 ,Н.И. Мезен 2 ,С.В. Корень 1 ,К. В. Антоненко 2 .Л. А. Хватова 1

Стволовые клетки. перспективы их применения в медицине

ГУ НИИ эпидемиологии и микробиологии МЗ РБ¹, Белорусский государственный медицинский университет²

В статье обобщены имеющиеся в литературе данные о стволовых клетках организма человека, их функциях, получении и перспективах применения в медицине.

Ключевые слова: эмбриональные стволовые клетки, стромальные стволовые клетки, кроветворные стволовые клетки, мультипотентность, плюрипотентность, дифференцировка.

Z.B. Kvacheva, V. I. Votyakov, L. P. Titov, N.I. Mezen, S.V.Koren, K.V.Antonenko, L. I. Chvatova

Stem cells. prospects of their use in medicine.

The article summarizes the data on human stem cells, their functions, generation and prospects of their use in medicine.

Key words: embryonic stem cells, stromal stem cells, hemopoietic stem cells, multipotency, pluripotency, differentiation

Конец XX века ознаменовался крупными достижениями молекулярной и клеточной биологии, которые создали предпосылки для применения принципиально новых эффективных технологий при лечении различных заболеваний. Успешная разработка методов получения и длительного культивирования стволовых клеток (СК) открыли широкие перспективы для применения их в медицине. Поэтому достижения в этой области являются интересными и актуальными как для биологии, так и для медицины.

1. Понятие о стволовых клетках. Стволовые клетки — это уникальные клеточные популяции, способные к самовозобновлению и дифференцировке в различные клеточные типы [6]. В отличие от других клеток организма, выполняющих строго определенные функции, СК остаются недифференцированными и обладают возможностью в ходе развития дифференцироваться в специализированные клетки. Из стволовой клетки могут возникнуть кожные, нервные, клетки крови и др.

Термин "стволовая клетка" был введен в биологию А. А. Максимовым в 1908 году на съезде гематологического общества в Берлине. В 70-х годах XX века А. Я. Фриденштейн и И. Л. Чертков открыли в строме костного мозга мезенхимальные (стромальные) СК, что положило начало исследованиям роли этих клеток в регенерации поврежденных тканей взрослого организма, в частности при трансплантации костного мозга. В 1981 году американскому ученому Мартину Эвансу впервые удалось выделить эмбриональные стволовые клетки (ЭСК) из зародыша мыши. А в 1998 г. американцы Д. Томпсон и Д. Герхарт выделили ЭСК из внутриклеточной массы 4-дневного человеческого эмбриона. Это открытие позволило выращивать СК іп vitro для биомедицинских исследований. В 1999 г. получение ЭСК человека было признано третьим по важности событием в биологии XX в. после открытия двойной спирали ДНК и расшифровки генома человека.

- 2. Происхождение и характеристика стволовых клеток. По происхождению и источнику выделения СК можно разделить на:
 - 1. СК эмбриона и тканей плода;
 - 2. СК взрослого организма (региональные или соматические)

При повреждении тканей соответствующего органа, находящиеся в нем СК мигрируют к зоне повреждения, делятся и дифференцируются, образуя в этом месте новую ткань.

По способности к дифференцировке выделяют тотипотентные, плюрипотентные, мультипотентные и унипотентные СК [3; 8]. Оплодотворенную яйцеклетку, зиготу, называют также тотипотентной СК (от лат. «totus» -полный, единый). Эта единственная клетка воспроизводит все органы эмбриона и необходимые для его развития структуры- плаценту и пуповину. Термин «плюрипотентный» используют для описания клетки, которая может быть источником клеток, производных любого из 3 зародышевых листков. Мультипотентные СК способны образовывать специализированные клетки нескольких типов (например, клетки крови, клетки печени). Унипотентные СК - это клетки дифференцирующиеся в обычных условиях только в специализированные клетки определенного типа. ЭСК способны дифференцироваться в клетки многих типов (то есть являются плюрипотентными), в то время как региональные СК (РСК) дифференцируются в ограниченное число клеточных типов (т. е. мультипотентны или унипотентны). Доля стволовых клеток в тканях взрослого организма, как правило, очень мала. Например, кроветворные стволовые клетки (КСК) встречаются с частотой 1:10 000 – 15 000 клеток костного мозга или 1:100 000 клеток периферической крови.

Все СК независимо от происхождения и источника выделения обладают несколькими уникальными свойствами:

- 1. Они неспециализированы т. е. не имеют тканеспецифичных структур, позволяющих выполнять специализированные функции;
- 2. Способны к пролиферации т. е. к длительному размножению и продукции большого числа клеток;
 - 3. Способны к дифференцировке процессу специализации клеток;
- 4. Способны к асимметричному делению, т. е. из каждой стволовой клетки при митозе образуются две дочерние, одна из которых идентична родительской и остается стволовой, другая дифференцируется в специализированные клетки. Этот процесс нарушается с возрастом, у пожилых людей меньше СК, чем у детей и взрослых, но какое-то количество их сохраняется до глубокой старости;
- 5. Путем миграции к зоне повреждения СК способствуют регенерации [8]. Таким образом, ЭСК дают начало всем типам клеток человеческого организма. Это и является их основной ролью, в то время как роль РСК заключается в поддержании и восстановлении определенных видов тканей, в которых они находятся.

Обнаружение и выделение СК происходит с помощью маркеров, которые, однако, найдены не ко всем видам СК. Существует серия поверхностных маркеров, характеризующих плюрипотентные ЭСК человека. К ним относятся ранние эмбриональные антигены SSEA-3 и SSEA-4. J. Weissman и соавт.[6] предложили набор сравнительных маркеров, экспрессирующих КСК мыши и человека в недифференцированном состоянии: CD34, SCA-1/CD59, Thy1, CD38, C-kit, lin. Маркером для нейральных СК является белок промежуточных филаментов-нестин.

Перечисленные свойства СК и та роль, которую они выполняют в организме, открывают перед наукой перспективы их использования для лечения травм и заболеваний.

3. Способы получения стволовых клеток. По способу получения выделяют 2 группы стволовых клеток: 1. Аллогенные СК (полученные из донорского материала). 2. Аутологичные или собственные СК.

Ранняя дифференцировка эмбриона человека ведет к образованию двух индивидуальных клеточных линий – клеток внутренней клеточной массы (ВКМ) и трофоэктодермы. Клетки ВКМ плюрипотентны и представляют собой собственно ЭСК, в то время как трофоэктодерма коммитирована исключительно в клетки зародышевых оболочек и плаценты [12]. Основным источником выделения ЭСК являются 5-дневные бластоцисты. Нормальный 5-дневный человеческий эмбрион in vitro состоит из 200-250 клеток, в большинстве своем составляющих трофоэктодерму [24]. Для получения ЭСК трофоэктодерма удаляется микрохирургическим или иммунохирургическим способом (при котором антитела к трофоэктодерме разрушают ее, высвобождая ВКМ). Оставшаяся ВКМ, состоит на данной стадии развития из 30 -34 клеток [13]. Клетки ВКМ помещают в культуральные чашки с ростовой средой с добавлением трех цитокинов (LIF, IL-6, SCF) на питательные слои эмбриональных мышиных фибробластов, предварительно инактивированных ?-излучением. По прошествии 9-15 дней клетки ВКМ делились и образовывали новые группы клеток. Затем клетки механически диссоциировали, переносили на новые чашки с аналогичным составом среды, культивировали, визуально выбирали гомогенные колонии и переносили на новые чашки. После экспансии и пассажей выводились клеточные линии. Имеются данные, что одна из пяти первоначальных линий, полученных таким методом, росла в пассажах in vitro в течение двух лет, дав 300кратное удвоение клеточной массы [27].

Для образования дифференцированных клеток специфических типов - миокарда, крови, нервных и других - изучается возможность контроля за дифференцировкой ЭСК. Дифференцировка ЭСК начинается при смене среды, добавлении сыворотки и элиминации LIF из среды. В качестве химических сигналов, позволяющих осуществлять целенаправленную дифференцировку ЭСК, применяют разнообразные факторы роста — преимущественно белки, участвующие на ранних стадиях в формировании разных клеточных типов. Например, активин А индуцирует преимущественно мезодерму и главным образом мышечные клетки (скелетные и сердца). Эпидермальный фактор роста индуцирует мезодерму и эктодерму (специфичен для клеток кожи), а нервный фактор роста воздействует на мезодерму, эктодерму и энтодерму (специфичен для клеток печени и поджелудочной железы) [3].

Перечень тканей, содержащих РСК, постоянно увеличивается и включает костный мозг, периферическую кровь, головной и спинной мозг, плаценту, дентальную пульпу, кровеносные сосуды, скелетные мышцы, эпителий кожи и пищеварительного тракта, роговицу, печень, поджелудочную железу и др. [3].

- 4. Состояние и проблемы применения стволовых клеток в медицине. Будущее клеточной терапии и трансплантологии, а, возможно, и медицины в целом связано с использованием СК, применяемых с целью замещения структурной и функциональной недостаточности различных органов. Использованию ЭСК в клеточной терапии многих заболеваний препятствует ряд проблем:
 - 1. Технические трудности в получении чистой линии человеческих ЭСК;

- 2. Недостаток информации об индукции их дифференцировке in vitro;
- 3. Наличие ряда биоэтических вопросов, которые возникают при использовании ЭСК, полученных из эмбриональной ткани. В ряде стран приняты запретительные ограничения на использование в исследовательской работе эмбриональной ткани человека.
- 4. Существование риска канцерогенеза. Инъекция ЭСК мышам может формированть опухоли, именуемые тератомами [6];
 - 5. Иммунологические проблемы отторжения.

В последнее время в литературе уделяется достаточно много внимания РСК, которые найдены почти во всех органах. Основные преимущества РСК заключаются в том, что они могут быть использованы при необходимости как аутогенный клеточный материал. Поэтому не возникает проблем иммунологического отторжения, а также этических препятствий к их использованию. Недостатки и проблемы при использовании РСК для клеточной терапии связаны с тем, что еще недостаточно изучены факторы их дифференцировки in vitro, их трудно получить в достаточном количестве для развития клинического эффекта после трансплантации. Кроме того, с возрастом их количество и терапевтический потенциал уменьшаются. Хотя о применении СК в различных областях медицины накоплены многочисленные экспериментальные данные, но клинические исследования находятся в основном еще в стадии апробации и требуют анализа и усовершенствования.

Большое внимание ряд исследователей уделяют использованию в медицине СК костного мозга: кроветворных и стромальных клеток. Выращивая стромальные стволовые клетки (ССК) и получая достаточно большие их количества, можно задавать направление их дифференцировки. Эти клетки способны дифференцироваться в клетки хрящевой, костной, мышечной, жировой тканей, ткани печени и кожи. В ближайшее десятилетие это направление медицинской науки может стать основой для терапии наиболее распространенных заболеваний сердечнососудистой и центральной нервной системы, опорно-двигательного аппарата. Плюри и мультипотентность СК делает их идеальным материалом для использования в трансплантационных методах клеточной и генной терапии [1, 2, 4, 5, 10].

4. 1. Применение СК в кардиологии. В последние годы сделано несколько ключевых открытий, связанных с применением СК в кардиологии. D. Ortic и соавт. [22] вызывали у мышей повреждение кардиомиоцитов путем перевязки левой главной коронарной артерии. Затем животным вводили в пораженную стенку левого желудочка костно-мозговые СК, которые вызывали образование кардиомиоцитов, эндотелия и гладкомышечных клеток кровеносных сосудов. В результате удавалось добиться образования нового миокарда, включая коронарные артерии, артериолы и капилляры. Через 9 дней после начала заместительной клеточной терапии вновь образованный миокард занимал 68% поврежденной территории левого желудочка. Таким образом, удалось заменить «отмерший» миокард живой, активно функционирующей тканью.

Установлено, что введение СК в зону повреждения сердечной мышцы (зону инфаркта) устраняет явления постинфарктной сердечной недостаточности у экспериментальных животных. Так, стромальные клетки, введенные свиньям с экспериментальным инфарктом, уже через восемь недель полностью превращаются в клетки сердечной мышцы, восстанавливая ее функциональные свойства. По данным Американского кардиологического общества за 2000 год у крыс с искусственно

вызванным инфарктом 90% СК, введенных в область сердца, трансформируется в клетки сердечной мышцы [8]. В культуре человеческие кроветворные СК, подобно мышиным СК, дифференцируются в разнообразные типы клеток, включая кардиомиоциты [23].

Первым клиническим применением СК для лечения инфаркта называют исследование, начатое во Франции в 2000 г.: при операции на открытом сердце вводили выращенные в культуре аутологичные скелетные миобласты (более 30 инъекций) в зону инфаркта и периинфарктную зону [20]. В этом исследовании получены отдаленные результаты (год для первого больного): увеличение фракции выброса и улучшение симптоматики. В. Strauer с соавт. [26] на 6-й день после развития острого трансмурального инфаркта трансплантировали больному СК костного мозга в окклюзированную коронарную артерию. Через 10 недель после трансплантации СК зона инфаркта уменьшилась с 24,6% до 15,7% поверхности левого желудочка. Сердечный индекс и ударный объем выросли на 20-30%, конечный диастолический объем при нагрузке снизился на 30%.

Польские клиницисты трансплантировали СК 10 больным с острым инфарктом миокарда. Авторы констатируют безопасность процедуры и отмечают, что спустя 5 месяцев после инфаркта миокарда у всех больных наблюдали увеличение фракции выброса левого желудочка. Авторы подчеркивают, что представленные материалы являются недостаточными для оценки эффективности и касаются только переносимости предлагаемого метода лечения [3].

- 4. 2. Применение СК в неврологии и нейрохирургии. Длительное время доминировало представление о том, что нервные клетки в головном мозге взрослой особи не делятся. И только в последние несколько лет доказано, что СК взрослого головного мозга могут формировать 3 главных типа клеток астроциты, олигодендроциты и нейроны [16, 17, 21]. Большое значение придают СК (в частности, стромальным) при лечении различных нейродегенеративных и неврологических заболеваний: болезни Паркинсона, болезни Альцгеймера, хореи Гентингтона, мозжечковых атаксий, рассеянного склероза и др. Болезнь Паркинсона вызывается прогрессирующей дегенерацией и потерей допаминпродуцирующих нейронов (ДП-нейронов), что приводит к развитию тремора, ригидности и гипокинезии. В нескольких лабораториях с успехом применяют методы, индуцирующие дифференцировку ЭСК в клетки со многими свойствами ДП-нейронов. После трансплантации СК, дифференцирующихся в ДП-нейроны, в головном мозге крыс с моделью болезни Паркинсона наблюдалась реиннервация головного мозга с высвобождением допамина и улучшением моторной функции [3].
- G. Steinberg и соавт. из отдела нейрохирургии Стенфордского университета у крыс с моделью мозгового инсульта изучали выживаемость, миграцию, дифференцировку и функциональные свойства человеческих зародышевых нервных СК, вводимых животным в 3 разных участка тела, отличающихся по расстоянию от пораженного участка коры головного мозга. Через 5 недель после введения СК наблюдали миграцию клеток в область повреждения и их дифференцировку в нейроны. Результаты этого исследования свидетельствуют о потенциальной возможности использования СК в лечении мозгового инсульта [3].

В работах (Институт биологии гена РАН, Институт биологии развития РАН, Институт акушерства, гинекологии и перинатологии РАМН) выделены региональные нейральные стволовые клетки плода человека, дана их подробная

иммуногистохимическая характеристика, в том числе на проточном флюориметре. В опытах с трансплантацией стволовых нейральных клеток человека в мозг крыс была показана их приживляемость, миграция на достаточно большие расстояния и способность к дифференцировке. Последняя в значительной степени определяется микроокружением, в которое попадает трансплантат. Так, при трансплантации нейральных стволовых клеток человека, в ту область мозжечка крысы, где расположены клетки Пуркинье, они дифференцируются в направлении именно этого типа клеток, о чем свидетельствует синтез в них белка калбиндина, специфического продукта клеток Пуркинье [1, 2, 7, 9].

4. 3. Применение СК в эндокринологии. Региональные СК существуют в поджелудочной железе в панкреатических протоках и островках Лангерганса. В нескольких последних сообщениях указывается, что СК, экспрессирующие нестин (который обычно рассматривается как маркер нервных клеток), могут генерировать все типы островковых клеток [19].

В настоящее время существует несколько подходов к созданию клона инсулинпродуцирующих клеток. В качестве исходного материала используют выделенные из человеческого трупа или полученные при биопсии поджелудочной железы ?-клетки и прогениторные клетки из панкреатических протоков [14, 15]. Наиболее перспективным для получения инсулинпродуцирующих клеток считают использование эмбриональных клеток. Испанские исследователи [25] с помощью генной инженерии получили инсулинпродуцирующие клетки, которые трансплантировали мышам с диабетом. Через 24 ч содержание глюкозы у мышей снизилось до нормы. Спустя 4 недели у 60% мышей уровень гликемии оставался нормальным, что свидетельствовало о приживлении трансплантированных клеток. Более того, клетки, продуцирующие инсулин, обнаружены у этих животных в селезенке и печени. Однако проблема заключается в том, что пока удается получить очень небольшое число инсулинпродуцирующих клонов.

Российскими биологами (Институт биологии гена РАН, Харьковский институт криобиологии и фирма Вирола) разработана методика индукции в культуре стволовых стромальных клеток дифференцировки в направлении клеток, подобных клеткам островков Лангерганса, синтезирующим инсулин. Синтез этого белка был продемонстрирован с помощью современных методов молекулярной биологии и цитологии. Интересно, что эти клетки формируют в культуре структуры, напоминающие островки Лангерганса. Они могут быть использованы для лечения диабета [11].

- 4. 4. Применение СК в гепатологии. Много исследований посвящено изучению природы СК, которые могут восстанавливать печень взрослых млекопитающих. Работы, выполненные на грызунах, свидетельствуют о том, что СК костного мозга могут находиться в печени после ее повреждения и обнаруживают пластичность, превращаясь в гепатоциты. Е. Lagasse и соавт. [18] вводили мышам с моделью печеночной недостаточности нефракционированные мышиные КСК. Введение этих клеток способствовало восстановлению показателей печеночных функций и увеличению выживаемости.
- 4. 5. Применение СК в гематологии. Одна из популяций костно-мозговых стволовых клеток КСК ответственны за продукцию всех типов клеток крови. Эти клетки изучают уже более 50 лет. К числу первых заболеваний, при которых стали использовать с лечебной целью КСК относятся гемобластозы: острые лейкозы,

хронический миелолейкоз, миеломная болезнь и др. При перечисленных заболеваниях опухолевые гемопоэтические клетки разрушаются с помощью больших доз химиотерапии и/или общего облучения с последующим восстановлением нормального гемопоэза путем трансплантации аллогенных КСК [3].

4. б. Применение СК в лечении аутоиммунных болезней. По аналогии с лечением гемобластозов изучают возможность использования КСК при некоторых аутоиммунных заболеваниях – системной красной волчанке, синдроме Съегрена, ревматоидном артрите, сахарном диабете типа 1 и рассеянном склерозе. При перечисленных заболеваниях у больных собирались и замораживались КСК, затем пациенты получали высокодозированную химио/радиотерапию, после чего проводилась аутотрансплантация ранее замороженных КСК. После указанной процедуры в течение 3 лет наблюдали 7 больных. На протяжении всего периода наблюдения у больных отсутствовали активные проявления болезни и они не нуждались в иммуносупрессивной поддерживающей терапии [28].

Чрезвычайно перспективным представляется создание криобанка СК человека и организация соответствующей донорской службы. Основной задачей криобанка СК человека является обработка (уменьшение объема замораживаемого образца, удаление не определяющих дальнейшее применение клеточных элементов, смешивание с криоконсервантом) и длительное, практически не ограниченное во времени, хранение ранее заготовленных СК, вне зависимости от источника их получения. Наиболее реальный на сегодня и практически неограниченный источник СК – пуповинная кровь. Существуют криобанки СК с образцами для каждого родившегося ребенка, собранными из его пуповины и замороженными. При заболевании (онкологических, нарушениях иммунной системы, заболеваниях крови, мышц, кожи и т. д.) человек может воспользоваться трансплантацией собственных СК, которая включит механизмы самовосстановления поврежденных органов и систем. Сегодня в мире имеется несколько десятков таких официально зарегистрированных криобанков, примерно половина из них – в США.

Суммируя представленные данные о роли СК в организме человека, методах их выделения и использования, можно заключить, что изучение СК в любом аспекте представляется крайне актуальной научной проблемой, решение которой способно совершить качественный прорыв в медицине.

Литература:

- 1. Александрова М. А. , Павлова Г. В., Ревищин А. В. и др.// Генетика. 2000. Т. 36, N 11. С. 1553-1560.
- 2. Александрова М. А., Ревищин А. В., Полтавцева Р. А. и др.// Онтогенез. 2003. Т. 34, N 3. С. 167-173.
- 3. Вермель А. Е. Стволовые клетки: общая характеристика и перспективы применения в клинической практике. // Клиническая медицина № 1, 2004.С. 5-11.
 - 4. Викторов И. В., Сухих Г. В. // Вестник РАМН. 2002. N 4. C. 24-30.
 - 5. Викторов И. В. // Изв. АН, сер. Биол. 2001. N 6 . C.645-655.
- 6. Егоров В. В., Иванов А. А. , Пальцев М. А. Стволовые клетки человека. // Молекулярная медицина, 2003, 2. С. 3-14.
 - 7. Корочкин Л. И. // Изв. АН. Сер. Биол. 2001. N 6. C. 666-671.
- 8. Лищук В. А. , Мосткова Е. В. Стволовые клетки: исследования и практика. // Валеология, № 2, 2003.С. 4-16