DOI: https://doi.org/10.51922/1818-426X.2023.4.49

В. В. Буткевич¹, С. В. Жаворонок¹, Е. И. Гудкова², Е. Н. Николенко³, О. М. Залуцкая³, А. Ю. Романейко³, Л. А. Анисько⁴, В. Н. Зайиева⁴

ДИНАМИКА АНТИБИОТИКОРЕЗИСТЕНТНОСТИ КЛИНИЧЕСКИХ ИЗОЛЯТОВ *KLEBSIELLA PNEUMONIAE*, ВЫДЕЛЕННЫХ ОТ ПАЦИЕНТОВ С ВТОРИЧНОЙ БАКТЕРИАЛЬНОЙ ИНФЕКЦИЕЙ ПРИ COVID-19 ЗА ПЕРИОД 2019—2021 гг.

УО «Белорусский государственный медицинский университет»¹ РНПЦ «Микробиологии и эпидемиологии»² ГУ «Республиканский научно-практический центр пульмонологии и фтизиатрии»³

УЗ «Городская клиническая инфекционная больница»⁴

Грамотрицательные бактерии продолжают лидировать по показателям антибиотикорезистентности среди возбудителей оппортунистических инфекций. Особое место среди них занимает К. pneumoniae, с высокой частотой вызывающие вторичные бактериальные инфекции у пациентов с COVID-19.

Цель работы. Изучить динамику чувствительности/устойчивости к антибиотикам клинических изолятов К. pneumoniae, выделенных из биологического материала у пациентов с вторичной бактериальной инфекцией при COVID-19.

Материалы и методы. По показателю чувствительности/устойчивости изучены 535 клинических изолятов К. pneumoniae, выделенных от пациентов с COVID-19 в различных регионах Республики Беларусь в период 2019—2021 гг.

Результаты. Доля клинических изолятов K. pneumoniae, резистентных к антибиотикам увеличилась в 2021 г. по сравнению с 2019 г. и составила для карбапенемов в 2019 г. эртапенем — $46.4 \pm 3.35 \%$, имипенем — $35.8 \pm 3.19 \%$ и меропенем — $39.6 \pm 3.28 \%$ и в 2021 г. эртапенем $66.7 \pm 4.74 \%$ (p = 0.000603), имипенем $54.4 \pm 4.66 \%$ (p = 0.001253) и меропенем $54.5 \pm 4.49 \%$ (p = 0.008182). К. pneumoniae проявила высокую частоту резистентности к колистину: в 2019 г. — $95.0 \pm 4.87 \%$, в 2020 г. — $100.0 \pm 0.0 \%$ (p = 0.311608), в 2021 г. — $55.3 \pm 7.25 \%$ (p = 0.000046).

Вывод. Среди клинических изолятов К. pneumoniae, наблюдалось широкое распространение резистентности к большинству антибиотиков, а также рост резистентности к карбапенемам.

Ключевые слова: антибиотики, резистентность, COVID-19, K. pneumoniae.

V. V. Butkevich, S. V. Zhavoronok, E. I. Gudkova, E. N. Nikolenko, O. M. Zaluckaya, A. Y. Romaneyko, L. A. Anisko, V. N. Zaitseva

DYNAMICS OF ANTIBIOTIC RESISTANCE OF KLEBSIELLA PNEUMONIAE CLINICAL ISOLATES FROM PATIENTS WITH SECONDARY BACTERIAL INFECTION DURING COVID-19 FOR THE PERIOD 2019–2021

Gram-negative bacteria (GAB) continue to lead in terms of antibiotic resistance among the causative agents of opportunistic infections. K. pneumoniae occupies a special place among GOBs, causing secondary bacterial infections with a high frequency in patients with COVID-19.

Objective. To study the dynamics of sensitivity/resistance to antibiotics of K. pneumoniae clinical isolates isolated from biological material in patients with secondary bacterial infection with COVID-19.

Materials and methods. In terms of sensitivity/resistance, 535 clinical isolates of K. pneumoniae isolated from patients with COVID-19 in various regions of the Republic of Belarus in the period 2019–2021 were studied.

Results. The proportion of clinical isolates of K. pneumoniae resistant to antibiotics against the background increased in 2021 compared to 2019 and was for carbapenems in 2019 ertapenem - 46,4 \pm 3,35 %, imipenem - 35,8 \pm 3,19 % and meropenem - 39,6 \pm 3,28 % and in 2021 ertapenem 66,7 \pm 4,74 % (p=0,000603), imipenem 54,4 \pm 4,66 % (p=0,001253) and meropenem 54,5 \pm 4,49 % (p=0,008182). K. pneumoniae showed a high frequency of resistance to colistin: against the background of COVID-19 in 2019 - 95,0 \pm 4,87 %, in 2020 - 100,0 \pm 0,0 % (p=0,311608), in 2021 - 55,3 \pm 7,25 % (p=0,000046).

Conclusion. Among clinical isolates of K. pneumoniae, widespread resistance to most antibiotics was observed, as well as an increase in resistance to carbapenems.

Key words: antibiotics, resistance, COVID-19, K. pneumoniae.

Распространение COVID-19 (Corona Virus Disease 2019) создало благоприятные условия для появления генетических мутаций, как для вирусов, так и для бактерий различных видов.

На фоне мутаций генов разных вариантов вируса SARS-CoV-2, также претерпевают изменения гены бактерий, связанные с антибиотикорезистентностью. Klebsiella рпеитопіае, считается одним из самых проблемных инфекционных возбудителей среди грамотрицательных бактерий. Американское сообщество по инфекционным болезням ввело термин «ESKAPE» (Enterobacter species, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa и Enterococcus faecium), в который вошли наиболее значимые бактериальные возбудители оппортунистических инфекций. Частота обнаружения К. pneumoniae, характеризующихся множественной и экстремальной устойчивостью к антимикробным препаратам (АМП), в последние годы значительно возросла [1, 2].

Известен 21 ген, отвечающий за наличие резистентности к антибиотикам у бактерий, среди них наиболее значимыми являются (AmpC, TEM, CTX-M, VIM, NDM, FLOR, tetG) и недавно обнаруженный ген (MCR-1), коди-

рующий лекарственную устойчивость к колистину [3].

Наблюдают два типа устойчивости к антибиотикам: механизм приобретения генов β-лактамаз расширенного спектра (ESBL) (например, TEM, CTX-M и OXA), которые обеспечивают устойчивость к цефалоспориновым и монобактамным антибиотикам. Другим механизмом резистентности к карбапенемам, который осуществляется с помощью продукции карбапенемаз (NDM, VIM и KPC) - ферментов, разрушающих АМП, что вызывает затруднения при лечении бактериальных инфекций, вызванных К. pneumoniae и других возбудителей оппортунистических инфекций [4, 5]. Распространение множественной резистентности к антибиотикам среди основных возбудителей вторичных бактериальных инфекций при COVID-19, представляет реальную угрозу и определяет необходимость постоянного мониторинга чувствительности/устойчивости возбудителей, входящих в группу «ESKAPE» [6].

Цель исследования – изучить динамику чувствительности/устойчивости к антибиотикам клинических изолятов *К. pneumoniae*, возбудителей вторичных бактериальных инфекций у пациентов с COVID-19.

Материалы и методы

В данной статье представлены результаты анализа оценки чувствительности/устойчивости к антибиотикам клинических изолятов K. pneumoniae, выделенных из биологического материала (крови и мокроты) у пациентов Республиканского научно-практического центра пульмонологии и фтизиатрии (РНПЦ «ПиФ») и УЗ «Городская клиническая инфекционная больница» направленных из различных регионов Республики Беларусь, с вторичной бактериальной инфекцией и COVID-19 в период с 2019 по 2021 гг. У всех пациентов диагноз коронавирусной инфекции COVID-19 подтвержден методом ПЦР. В исследовании участвовал только один клинический изолят от каждого пациента.

Клинические изоляты *K. pneumoniae* были разделены на 3 категории: устойчивые (R – resistant), умеренно-устойчивые (I – intermediate) и чувствительные (S – susceptible). Идентификацию и определе-

ние чувствительности/устойчивости клинических изолятов *К. pneumoniae* выполняли с использованием микробиологических анализаторов.

Результаты и обсуждение

В ходе анализа чувствительности/устойчивости *К. pneumoniae* к антибиотикам за 2019 г. были получены результаты, которые представлены в (таблице 1). Самая высокая эффективность выявлена у фосфомицина и триметоприма, частота обнаружения чувствительных изолятов составила 77,1 ± 3,50 % и 65,6 ± 3,15 % соответственно.

Среди аминогликозидов частота резистентности к амикацину составила $30,4\pm3,05\%$, к гентамицину – $39,1\pm3,29\%$ и тобрамицину – $43,4\pm4,14\%$. Частота резистентности к карбапенемам была – эртапенему – $46,4\pm3,35\%$, имипенему – $35,8\pm3,19\%$ и меропенему – $39,6\pm3,28\%$.

Таблица 1. Чувствительность/устойчивость к антибиотикам клинических изолятов К. pneumoniae, выделенных от пациентов с COVID-19 за 2019 г.

Антибиотики	Устойчивые (R) (% ± <i>m</i>)		Умеренно-устойчивые (I) (% ± m)		Чувствительные (S) (% ± m)	
	n	%	n	%	n	%
Амикацин	69	30,4 ± 3,05	19	8,4 ± 1,84	139	61,2 ± 3,23
Гентамицин	86	39,1 ± 3,29	2	0,9 ± 0,64	131	59,5 ± 3,31
Тобрамицин	62	43,4 ± 4,14	1	0,7 ± 0,7	73	51,0 ± 4,18
Эртапенем	103	46,4 ± 3,35	4	1,8 ± 0,89	115	51,8 ± 3,35
Имипенем	81	35,8 ± 3,19	12	5,3 ± 1,49	133	58,8 ± 3,27
Меропенем	88	39,6 ± 3,28	4	1,8 ± 0,89	130	58,6 ± 3,1
Цефуроксим	133	59,9 ± 3,29	0	$0,0 \pm 0,0$	89	40,1 ± 3,29
Цефтазидим	109	48,0 ± 3,32	13	5,7 ± 1,54	105	46,3 ± 3,31
Цефотаксим	76	57,6 ± 4,30	0	0.0 ± 0.0	56	42,4 ± 4,3
Цефепим	129	57,1 ± 3,29	4	1,8 ± 0,88	93	41,1 ± 3,27
Ампициллин	220	99,5 ± 0,45	0	$0,0 \pm 0,0$	1	0,5 ± 0,5
Пиперациллин	86	59,7 ± 4,09	3	2,1 ± 1,19	55	38,2 ± 4,05
Амоксициллин/клавуланат	137	60,9 ± 3,25	1	0,4 ± 0,44	84	37,3 ± 3,22
Пиперациллин/тазобактам	102	47,0 ± 3,39	4	1,8 ± 0,91	111	51,2 ± 3,39
Колистин	19	95,0 ± 4,87	0	0,0 ± 0,0	1	5,0 ± 4,87
Триметоприм	74	32,6 ± 3,11	0	0,0 ± 0,0	149	65,6 ± 3,15
Фосфомицин	33	22,9 ± 3,50	0	0,0 ± 0,0	111	77,1 ± 3,50
Ципрофлоксацин	119	61,0 ± 3,49	1	0,5 ± 0,5	75	38,5 ± 3,48
Левофлоксацин	116	61,7 ± 3,55	1	0,5 ± 0,5	71	37,8 ± 3,54
Тигециклин	89	40,6 ± 3,32	99	45,2 ± 3,36	31	14,2 ± 2,36

□ Оригинальные научные публикации

К цефалоспоринам резистентность изолятов K. pneumoniae установлена для цефтазидима – в 48.0 ± 3.32 %, цефуроксима – 59.9 ± 3.29 %, цефотаксима – 57.6 ± 4.30 % и для цефепима – 57.1 ± 3.29 %. У «защищенных» пенициллинов частота резистентности к амоксициллину/клавуланату составила 60.9 ± 3.25 %, пиперациллину/тазобактаму – 47.0 ± 3.39 %.

Резистентностью к фторхинолонам характеризовались $61,0\pm3,49\%-61,7\pm3,55\%$ изученных изолятов. Частота резистентности к колистину составила $95,0\pm4,87\%$. Резистентность K. pneumoniae к тигециклину установлена у $40,6\pm3,32\%$ изолятов, умеренно-устойчивых было $45,2\pm3,36\%$.

Результаты исследования за 2020 г. представлены в таблице 2. Наибольшей эффективностью в отношении K. pneumoniae обладал фосфомицин – 76,2 \pm 3,25 % чувствительных культур.

Среди аминогликозидов частота резистентности к амикацину составила

 $33,9\pm3,53\,\%$, к гентамицину – $42,9\pm3,67\,\%$ и тобрамицину – $41,2\pm3,65\,\%$ соответственно. Частота резистентности к карбапенемам составила к эртапенему – $47,3\pm3,70\,\%$, имипенему – $37,5\pm3,65\,\%$ и меропенему – $44,8\pm3,77\,\%$. К цефалоспоринам резистентность изолятов K. pneumoniae выявлена для цефтазидима – $50,3\pm3,74\,\%$, цефуроксима – $60,4\pm3,94\,\%$, цефотаксима – $52,6\pm4,05\,\%$ и для цефепима – $55,9\pm3,73\,\%$. К «защищенным» пенициллинам частота резистентности составила к амоксициллину/клавуланату – $62,0\pm3,63\,\%$ и пиперациллину/тазобактаму – $46,8\pm3,82\,\%$.

Частота резистентности K. pneumoniae K фторхинолонам была для ципрофлоксацина $57.9 \pm 3.70 \%$ и для левофлоксацина $56.5 \pm 4.00 \%$. Все изученные клинические изоляты были резистентными K колистину. K тигециклину большинство изученных изолятов были резистентны ($32.2 \pm 3.79 \%$) или умерено-устойчивы ($36.8 \pm 3.91 \%$).

Таблица 2. Чувствительность/устойчивость к антибиотикам клинических изолятов К. pneumoniae, выделенных от пациентов с COVID-19 за 2020 г.

Антибиотики	Устойчивые (R) (% ± <i>m</i>)		Умеренно-устойчивые (I) (% ± m)		Чувствительные (S) (% ± m)	
АНТИОИОТИКИ	n	%	n	%	n	%
Амикацин	61	33,9 ± 3,53	12	6,7 ± 1,86	107	59,4 ± 3,66
Гентамицин	78	42,9 ± 3,67	3	1,6 ± 0,94	101	55,5 ± 3,68
Тобрамицин	75	41,2 ± 3,65	1	0,5 ± 0,55	106	58,2 ± 3,66
Эртапенем	86	47,3 ± 3,70	0	0.0 ± 0.0	96	52,7 ± 3,70
Имипенем	66	37,5 ± 3,65	14	8,0 ± 2,04	96	54,5 ± 3,75
Меропенем	78	44,8 ± 3,77	4	2,3 ± 1,14	92	52,9 ± 3,78
Цефуроксим	93	60,4 ± 3,94	0	0.0 ± 0.0	61	39,6 ± 3,94
Цефтазидим	90	50,3 ± 3,74	4	2,2 ± 1,10	85	47,5 ± 3,73
Цефотаксим	80	52,6 ± 4,05	0	0.0 ± 0.0	72	47,4 ± 4,05
Цефепим	99	55,9 ± 3,73	6	3,4 ± 1,36	72	40,7 ± 3,69
Ампициллин	173	99,4 ± 0,57	0	0.0 ± 0.0	1	0,57 ± 0,57
Пиперациллин	97	56,0 ± 3,77	12	6,9 ± 1,93	64	37,0 ± 3,67
Амоксициллин/клавуланат	111	62,0 ± 3,63	0	0.0 ± 0.0	68	38,0 ± 3,63
Пиперациллин/тазобактам	80	46,8 ± 3,82	11	6,4 ± 1,88	80	46,8 ± 3,82
Колистин	19	100,0 ± 0,00	0	0.0 ± 0.0	0	0.0 ± 0.0
Триметоприм	78	45,6 ± 3,81	3	1,8 ± 1,00	90	52,6 ± 3,82
Фосфомицин	40	23,3 ± 3,22	1	0,6 ± 0,6	131	76,2 ± 3,25
Ципрофлоксацин	103	57,9 ± 3,70	3	1,7 ± 0,97	72	40,4 ± 3,68
Левофлоксацин	87	56,5 ± 4,00	3	1,9 ± 1,11	64	41,6 ± 3,97
Тигециклин	49	32,2 ± 3,79	56	36,8 ± 3,91	47	30,9 ± 3,75

Таблица 3. **Чувствительность/устойчивость к антибиотикам клинических изолятов** *K. pneumoniae*, выделенных от пациентов с COVID-19 за 2021 г.

Антибиотики	Устойчивые (R) (% ± <i>m</i>)		Умеренно-устойчивые (I) (% ± m)		Чувствительные (S) (% ± <i>m</i>)	
Антиоиотики	n	%	n	%	n	%
Амикацин	64	51,2 ± 4,47	0	0,0 ± 0,0	61	48,8 ± 4,47
Гентамицин	56	44,8 ± 4,45	1	0,8 ± 0,80	68	54,4 ± 4,45
Тобрамицин	63	51,2 ± 4,51	0	0.0 ± 0.0	60	48,8 ± 4,51
Эртапенем	66	66,7 ± 4,74	0	0,0 ± 0,0	33	33,3 ± 4,74
Имипенем	62	54,4 ± 4,66	2	1,7 ± 1,23	50	43,9 ± 4,65
Меропенем	67	54,5 ± 4,49	4	3,3 ± 1,60	52	42,3 ± 4,45
Цефуроксим	71	62,3 ± 4,54	1	0,9 ± 0,90	42	36,8 ± 4,52
Цефтазидим	52	41,6 ± 4,41	1	0,8 ± 0,80	72	57,6 ± 4,42
Цефотаксим	65	63,7 ± 4,76	0	0.0 ± 0.0	37	36,3 ± 4,76
Цефепим	76	61,8 ± 4,38	0	0.0 ± 0.0	47	38,2 ± 4,38
Ампициллин	99	100,0 ± 0,00	0	0.0 ± 0.0	0	0.0 ± 0.0
Пиперациллин	69	69,0 ± 4,62	0	2,0 ± 1,40	30	30,0 ± 4,58
Амоксициллин/клавуланат	94	76,4 ± 3,83	1	0,8 ± 0,80	28	22,8 ± 3,78
Пиперациллин/тазобактам	78	66,1 ± 4,36	3	2,5 ± 1,45	37	31,4 ± 4,27
Колистин	26	55,3 ± 7,25	1	2,5 ± 1,45	20	45,5 ± 7,21
Триметоприм	41	41,0 ± 4,92	2	2,0 ± 1,40	57	57,0 ± 4,95
Фосфомицин	27	27,3 ± 4,48	0	0,0 ± 0,0	72	72,7 ± 4,48
Ципрофлоксацин	75	60,5 ± 4,39	0	0.0 ± 0.0	49	39,5 ± 4,39
Левофлоксацин	74	60,2 ± 4,41	0	0,0 ± 0,0	49	39,8 ± 4,41
Тигециклин	33	26,8 ± 4,00	54	43,9 ± 4,47	36	29,3 ± 4,10

Результаты по оценке частоты чувствительности/устойчивости к антибиотикам изолятов *К. pneumoniae* за 2021 г. представлены в (таблице 3).

Динамика частоты устойчивости клинических изолятов *К. pneumoniae* к антибиотикам за период 2019–2021 г. показана на рисунке.

В 2021 году наибольшая эффективность по-прежнему сохранялась у фосфомицина и составила 72,7 ± 4,48 % чувствительных изолятов.

Среди аминогликозидов резистентность K. pneumoniae к амикацину составила 51.2 ± 4.47 %, к гентамицину 44.8 ± 4.45 % и тобрамицину 51.2 ± 4.51 % изолятов.

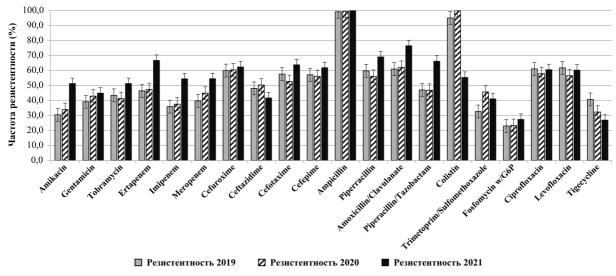


Рисунок 1. Динамика частоты устойчивости к антибиотикам клинических изолятов *К. pneumoniae* у пациентов с COVID-19 за 2019–2021 гг.

□ Оригинальные научные публикации

Частота резистентности к карбапенемам составила к эртапенему $-66,7 \pm 4,74 \%$, имипенему – $54.4 \pm 4.66 \%$ и меропенему – $54,5 \pm 4,49 \%$ изученных культур. К цефалоспоринам резистентность изолятов К. pneumoniae выявлена для цефтазидима - $41,6 \pm 4,41 \%$, цефуроксима – $62,3 \pm 4,54 \%$, цефотаксима - 63,7 ± 4,76 % и для цефепима - 61,8 ± 4,38 %. У «защищенных» пенициллинов показатели резистентности составили для амоксициллина/клавуланата - 76,4 ± 3,83 %, пиперациллина/тазобактама - 66,1 ± 4,36 %. Резистентность к фторхинолонам отмечена у $60.5 \pm 4.39 \%$ и $60,2 \pm 4,41$ % изученных изолятов для ципрофлоксацина и левофлоксацина соответственно. Резистентностью к колистину характеризовались $55,3 \pm 7,25 \%$ изолятов. 26,8 ± 4,00 % изолятов *K. pneumoпіае* были резистентными к тигециклину и 43,9 ± 4,47 % – умерено-устойчивыми.

В нашем исследовании была установлена динамика изменений показателей резистентности *К. pneumoniae* к аминогликозидам, карбапенемам, пенициллинам, и др. антибиотикам в 2021 г. по сравнению с 2019 г.

Выборочно нами было идентифицировано 5 изолятов *K.pneumoniae* с помощью анализатора BioFire FilmArray 2.0 (ВіоМегіеих, Франция), у которых было установлено наличие генов резистентности СТХ-М, ОХА-48 и VIM.

По данным многоцентрового исследования МАРАФОН, которое прошло в Российской Федерации в период 2013–2014 гг., *К. рпеитопіае* была этиологическим фактором внутрибольничной госпитальной инфекции в 48,7 % случаях. Установлена высокая частота резистентности к цефалоспоринам у всех видов энтеробактерий (>75 %) и прежде всего у *К. рпеитопіае* (>90 %). «Препараты резерва», такие как тигециклин, колистин и фосфомицин были активны в отношении >70 % нозокомиальных штаммов *К. рпеитопіае* [7].

В нашем исследовании наибольшая эффективность в отношении *К. pneumoniae*, была у фосфомицина – 72,7 %, триметоприма – 57,0 %, гентамицина – 54,4 %

Таблица 4. Статистическая значимость различий показателей резистентности *K. pneumoniae* к антибиотикам за 2019–2021 г.

Антибиотики	Уровень значимости (<i>p</i>) 2019-2020	Уровень значимости (<i>p</i>) 2019-2021
Амикацин	p = 0,454493	p = 0,000189
Гентамицин	p = 0,441849	p = 0,304812
Тобрамицин	p = 0,680730	p = 0,205057
Эртапенем	p = 0,857101	p = 0,000603
Имипенем	p = 0,726331	p = 0,001253
Меропенем	p = 0,299603	p = 0,008182
Цефуроксим	p = 0,922489	p = 0,669069
Цефтазидим	p = 0,646092	p = 0,24803
Цефотаксим	p = 0,398621	p = 0,343292
Цефепим	p = 0,809564	p = 0,391922
Ампициллин	p = 0,890550	p = 0,267365
Пиперациллин	p = 0,506791	p = 0,133829
Амоксициллин/клавуланат	p = 0,821572	p = 0,002282
Пиперациллин/тазобактам	p = 0,968807	p = 0,000681
Колистин	p = 0,311608	p = 0,000046
Триметоприм	p = 0,009089	p = 0,151764
Фосфомицин	p = 0,933212	p = 0,990014
Ципрофлоксацин	p = 0,542835	p = 0,929052
Левофлоксацин	p = 0,332075	p = 0,791335
Тигециклин	p = 0,097800	p = 0,009024

и цефтазидима – 57,6 % в 2021 г. Динамика резистентности K. pneumoniae к тигециклину в 2019 г. – 40,6 %, 2020 г. – 32,2 %, а в 2021 г. – 26,8 % (p = 0,009024). Однако, значительная часть клинических изолятов K. pneumoniae были умеренноустойчивыми к тигециклину в 2019 г. – 45,2 %, 2020 г. – 36,8 %, а в 2021 г. – 43,9 %.

Исследование проведенное в г. Санкт-Петербурга в 2015 г., которое прошло до начала распространения COVID-19, где было выделено 421 клинических изолятов К. pneumoniae и 92,9 % из всех выделенных клинических изолятов были устойчивы, хотя бы к одному антибиотику. Резистентность изолятов К. pneumoniae к эртапенему – 53,0 %, к меропенему – 42,8 % и к имипенему – 37,1 % [8].

В нашем исследовании клинические изоляты K. pneumoniae имели близкие показатели по резистентности к карбапенемам в 2019 г. (эртапенем – 46,4 %, имипенем – 35,8 % и меропенем 39,6 %). Резистентность карбапенемов в 2021 г. на фоне COVID-19 увеличилась и составила у эртапенема – 66,7 % (p = 0,000603), имипенема – 54,4 % (p = 0,001253) и меропенема – 54,5 % (p = 0,008182). Установленная резистентность K. pneumoniae к цефалоспоринам II поколения (цефуроксим), III поколения (цефотаксим, цефтазидим) и IV поколения (цефепим), варьировало на уровне 48,0-63,7 % в период 2019-2021 гг.

В другом исследовании, которое прошло в г. Москва в 2020 г., где из 159 выделенных от пациентов клинических изолятов *К. pneumoniae*, 45 % из них были резистентные к колистину и 7 % резистентные к тигециклину [9].

По нашим данным *К. pneumonia*е проявила высокую частоту резистентности к колистину на фоне COVID-19 в 2019 г. – 95,0 \pm 4,87 %, в 2020 г. – 100,0 \pm 0,0 % (p = 0,311608), а в 2021 г. резистентность *К. pneumonia*е выявлена только у 55,3 \pm 7,25 % (p = 0,000046) выделен-

ных штаммов, что требует дополнительного изучения и мониторинга.

Распространение резистентных штаммов грамотрицательных бактерий к карбапенемам, непосредственно привело к росту назначения полимиксинов, что вызвало увеличение резистентности клинических изолятов к колистину [10].

По результатам проведенного исследования в г. Минске в период 2019–2021 гг. в УЗ «Городская клиническая инфекционная больница», резистентность К. pneumoniae увеличилась в 2021 г. по сравнению с 2019 г. к β-лактамным антибиотикам, аминогликозидам, цефалоспоринам и фторхинолонам. Также было выделено из крови несколько полирезистентных штаммов К. pneumoniae, которые были устойчивы к колистину [11].

Была установлена динамика резистентности по отношению к «защищенным» пенициллинам: для амоксициллин/клавуланата в 2019 г. – 60,9 %, 2020 г. – 62,0 % и в 2021 г. – 76,4 % (p = 0,002282) резистентных изолятов, для пиперациллин/тазобактама, резистентность K. pneumoniae увеличилась с 47,0 % в 2019 г., до 66,1 % в 2021 г. (p = 0,000681). Анализируя резистентность изолятов K. pneumoniae к аминогликозидам, было отмечено статистически значимое увеличение резистентности к амикацину, которое составило в 2019 г. – 30,4 %, 2020 г. – 33,9 % и 2021 г. – 51,2 % (p = 0,000189).

Заключение

1. За 3-х летний период пандемии COVID-19 подходы к назначению АМП постоянно изменялись. Это характеризовалось необоснованно широким применением АМП и отразилось на показателях устойчивости бактерий, которые высевались от пациентов, находящихся на лечении в лечебном учреждении по поводу COVID-19.

Исследование, проведенное в 2020 г., в котором всем пациентам с COVID-19 на-

□ Оригинальные научные публикации

значалась антибактериальная терапия, хотя только 7 % имели бактериальную инфекцию [10].

- 2. Результаты проведенного исследования свидетельствуют о широком распространении резистентности среди штаммов *К. рпеитопіае* к большинству распространенных антибиотиков (пенициллины, цефалоспорины, карбапенемы) в период пандемии COVID-19. Особенно вызывает настороженность процесс увеличения резистентности к карбапенемам, где доля резистентных клинических изолятов *К. рпеитопіае* выросла в 2021 г. по сравнению с 2019 г. (эртапенем в 1,4 раза, имипенем в 1,5 раза и меропенем в 1,4 раза).
- 3. Фосфомицин и тигециклин проявили относительно высокую эффективность в отношении *K. pneumoniae* в 2021 г. и могут быть перспективными для лечения пациентов.
- 4. Одним из путей преодоления резистентности грамотрицательных бактерий является рациональная антибиотикотерапия, а также необходимы для этого новые доступные экспресс-тесты для выявления самих возбудителей инфекций и спектра их антибиотикорезистентности. Выбор антибиотиков для этиотропной терапии должен базироваться на данных антибиотикорезистентности, полученных в результате динамического микробиологического мониторинга.

Литература

- 1. Шамина, О. В., Самойлова Е. А., Новикова И. Е., Лазарева А. В. Klebsiella pneumoniae: микробиологическая характеристика, антибиотикорезистентность и вирулентность. Российский педиатрический журнал. 2020. № 23(3). С. 191–197. DOI:10.18821/1560-9561-2020-23-3-191-197.
- 2. Paczosa, M. K., Mecsas J. Klebsiella pneumoniae: Going on the Offense with a Strong Defense. Microbiol. Mol. Biol. Rev. 2016. N 80. P. 629–661. DOI:10.1128/MMBR.00078-15.
- 3. Voulgari, E., Poulou A., Koumaki V., Tsakris A. Carbapenemase producing Enterobacteriaceae: now that the storm is finally here, how will timely detection

- help us fightback? // FutureMicrobiol. 2013. № 8(1). P. 27–39. DOI:10.2217/fmb.12.130.
- 4. *Martin*, R. M., Bachman M. A. Colonization, Infection, and the Accessory Genome of *Klebsiella pneumonia* // Front Cell Infect. Microbiol. 2018. № 8. P. 4. DOI:10.3389/fcimb.2018.00004.
- 5. Yang, Li, Dan Li et. al. The Epidemiology, Virulence and Antimicrobial Resistance of Invasive Klebsiella pneumoniae et. al. Children's Medical Center in Eastern China; Infect Drug Resist. 2021 № 14. P. 3737–3752. DOI:10.2147/IDR. S323353.
- 6. Тапальский, Д. В., Жаворонок С. В., Карбапенемазы грамотрицательных бактерий: распространение и методы детекции // Медицинский журнал. – 2012. – № 2. – С. 10–14.
- 7. Сухорукова, М. В., Эйдельштейн М. В. Антибиотикорезистентность нозокомиальных штаммов Enterobacteriaceae в стационарах России: результаты многоцентрового эпидемиологического исследования «МАРАФОН» 2013–2014 // Клиническая Микробиология и антимикробная химиотерапия. – 2017. – № 19(1). – С. 49–56.
- 8. Козлова, Н. С., Баранцевич Н. Е., Баранцевич Е. П. Чувствительность к антибиотикам штаммов Klebsiella pneumoniae, выделенных в многопрофильном стационаре // Инфекция и иммунитет. 2018. Т. 8, № 1. С. 79–84.
- 9. Шамина, О. В., Крыжановская О. А. и др. Устойчивость карбапенем резистентных штаммов Klebsiella pneumoniae к колистину: молекулярные механизмы и бактериальный фитнес // Вестник РГМУ. 2020. № 3. С. 11–18.
- 10. Li, Z., Cao Y., Yi L. et al. Emergent polymyxin resistance: end of an era $/\!/$ Open Forum Infect. Dis. 2019. Vol. 6, № 10. Article ID ofz368. DOI: https://doi.org/10.1093/ofi d/ofz368.
- 11. Анисько, Л. А. Проблема применения антибактериальных препаратов в эпоху инфекции COVID-19 // Журнал «Лабораторная диагностика. Восточная Европа». 2022. Т. 11, № 1. С. 22–29.

References

- 1. Shamina, O. V., SamoilovaE. A., NovikovaI. E., LazarevaA. V. Klebsiella pneumoniae: microbiological characterization, antibiotic resistance and virulence // Russian pediatric journal. 2020. № 23(3). P. 191–197. DOI: 10.18821/1560-9561-2020-23-3-191-197.
- 2. Paczosa, M. K., Mecsas J. Klebsiella pneumoniae: Going on the Offense with a Strong Defense // Microbiol. Mol. Biol. Rev. 2016. Vol. 80. P. 629–661. DOI: 10.1128/MMBR.00078-15.
- 3. Voulgari, E., Poulou A., Koumaki V., Tsakris A. Carbapenemase producing Enterobacteriaceae: now that the storm is finally here, how will timely detection

Оригинальные научные публикации 🖵

help us fightback? FutureMicrobiol. - 2013. - Vol. 8(1). - P. 27-39. - DOI:10.2217/fmb.12.130.

- 4. *Martin*, R. M., Bachman M. A. Colonization, Infection, and the Accessory Genome of *Klebsiella pneumoniae* // Front Cell Infect. Microbiol. 2018. № 8. P. 4. DOI: 10.3389/fcimb.2018.00004.
- 5. Yang, Li, Dan Li et. al. The Epidemiology, Virulence and Antimicrobial Resistance of Invasive Klebsiella pneumoniae et al. // Children's Medical Center in Eastern China; Infect Drug Resist. 2021. Vol. 14. P. 3737–3752. DOI: 10.2147/IDR. S323353.
- 6. Tapalsky, D. V., Zhavoronok S. V., Carbapenemases of gram-negative bacteria: distribution and methods of detection // Medical Journal. $2012. N_{\odot} 2. P. 10-14.$
- 7. Sukhorukova, M. V., Eidelstein M. V. Antibiotic resistance of nosocomial strains of Enterobacteriaceae in Russian hospitals: results of the multicenter epidemiological study "MARATHON" 2013–2014 // Clinical Microbiology and Antimicrobial Chemotherapy. 2017. Vol. 19(1). P. 49–56.

- 8. Kozlova, N. S., Barantsevich N. E., Barantsevich E. P. Antibiotic susceptibility of Klebsiella pneumoniae strains isolated in a multidisciplinary hospital // Infection and immunity. 2018. Vol. 8, N 1. P. 79–84.
- 9. Shamina, O. V., Kryzhanovskaya O. A. et al. Resistance of carbapenem-resistant strains of *Klebsiella pneumoniae* to colistin: molecular mechanisms and bacterial fitness // Bulletin of the RSMU. 2020. № 3. P. 11–18.
- 10. *Li*, Z., Cao Y., Yi L. et al. Emergent polymyxin resistance: end of an era // Open Forum Infect. Dis. 2019. Vol. 6, № 10. Article ID ofz368. DOI: https://doi.org/10.1093/ofid/ofz368.
- 11. Anisko, L. A. The problem of using antibacterial drugs in the era of COVID-19 infection // Journal "Laboratory Diagnostics. Eastern Europe". 2022. Vol. 11, № 1. P. 22–29.

Поступила 11.07.2023 г.