С. Л. Воскресенский, Н. В. Волчок

ЭХОСКОПИЧЕСКАЯ КАРТИНА ШЕЙКИ МАТКИ НАКАНУНЕ РОДОВ

ГУО «Белорусская медицинская академия последипломного образования»

В статье описываются ультразвуковые параметры шейки матки у 102 беременных с доношенной беременностью, выявлены изменения этих параметров на протяжении двух недель до родов.

Ключевые слова: беременность, ультразвуковое исследование, параметры шейки матки.

S. L. Voskresenski, N. V. Volchok CERVIX ULTRASOUND PECULIARITY BEFORE DELIVERY

In this article ultrasound peculiarity of cervix are described, after ultrasound examination of 102 pregnant ultrasound cervix changes were revealed for two weeks.

Kew words: pregnancy, ultrasound examination, cervix data.

рогнозирование начала родов является важным фактором безопасного родоразреше-ния. В клинических условиях оно основывается на пальпаторной оценке шейки матки, сроке гестации, на болевых ощущениях женщины в крестце, внизу живота, определении маточной активности, и некоторых других данных [Чернуха Е.А., 2003].

Вошедший в клиническую практику ультразвуковой метод, привнес надежды на использование новых признаков, указывающих на переход состояния беременности в состояние родов. Однако десятилетия применения ультразвуковых аппаратов в родильных учреждениях оправдали надежды лишь частично. На сегодняшний день для прогнозирования начала родов, по существу, используется только один показатель-длина шейки матки [Crane J.M., Hutchens D., 2008, Davies G. et al., 2008]. Но ориентация на этот показатель, даже с учетом клинических данных, в конечном счете, приводит к использованию оперативных методов родоразрешения у 18-20% беременных [Elghorori M.R. et al., 2006].

В то же время накануне родов в шейке матки кроме укорочения происходят и другие изменения. В частности, она размягчается, увеличивается диаметр цервикального канала, шейка превращается в кавернозное тело и пр. Выявление этих или других преобразований в шейке матки, которые возникают перед родами, могли быть полезными для прогнозирования начала родов. Однако в доступной литературе мы не обнаружили описания особенностей ультразвуковой картины шейки матки перед родами, чтобы использовать их в повседневной клинической практике.

Цель настоящего исследования-выявить эхоскопические изменения в структуре и размерах шейки матки, которые могли бы служить диагностическими признаками завершения состояния беременности и готовности репродуктивного аппарата женщины к родам.

Материал и методы

Ультразвуковое и пальпаторное исследование шейки проведено у 102 женщин с доношенной одноплодной беременностью и головным предлежанием плода. В зависимости от времени наступления родов от момента исследования пациентки были разделены на 3 группы.

В первую группу вошли 32 беременные с началом родов в течение суток после исследования, во вторую-41 беременная с началом родов через 2-5 дней после исследования, в третью-29 беременных с началом родов через 6-13 дней после проведения исследования.

Средняя продолжительность беременности в первой группе была $280\pm1,0$ дней, во второй- $280\pm1,1$ дней, в третьей- $282\pm1,2$ дня. Возраст беременных колебался в пределах $26\pm0,7-26\pm1,3$ лет. Первородящих в первой группе было у

16 беременных (50%), во второй-26 (63%), в третьей-15 (52%).

В ходе настоящей беременности во всех группах выявлялись такие осложнения беременности, как угроза прерывания, анемия беременных, гестоз, плацентарная недостаточность, гипоксия плода, ИППП, бактериальный вагиноз, неспецифический кольпит, ОРВИ, бактериурия, пиелонефрит, а также гепатоз, маловодие. Однако они не образовывали доминирующих состояний в каждой из групп.

Гинекологические заболевания (эрозия шейки матки, воспалительные заболевания придатков, дисфункция яичников, кисты яичников, доброкачественные заболевания молочной железы) в анамнезе были у 7 беременных в первой группе (22%), у 13-во второй (32%), у 9-в третьей (31%).

Экстрагенитальная патология отмечалась у 16 беременных в первой группе (50%), у 19-во второй (46%), у 4-в третьей (14%).

Пальпаторное исследование состояния родового канала проводили по традиционной для акушерства методике. Интервал времени между пальпаторным и ультразвуковым исследованием составлял не более 12 часов.

Ультразвуковое исследование проводилось на аппарате Siemens Sonoline G 50 с помощью трансвагинального (7,5 МГц) и трансабдоминального (3,5 МГц) датчиков по стандартным для акушерства и гинекологии методикам.

Длину шейки матки измеряли в сагиттальной плоскости и определяли как промежуток сомкнутой части цервикального канала. Ширину и переднезадний размер шейки матки оценивали в поперечном сечении в двух позициях: у наружного зева (дистальный срез) и на границе сомкнутой и «расходящейся» части цервикального канала (проксимальная плоскость). Площадь сечения рассчитывали по встроенной в аппарат программе.

В этих же плоскостях оценивали ширину, переднезадний размер и площадь поперечного сечения цервикального канала. Его просветом считали расстояние между вышележащим и нижележащим листками эндоцервикса на экране прибора. Также отмечали наличие в канале шейки слизи, которая визуализировались как самостоятельная структура повышенной эхогенности.

Ультразвуковую структуру шейки матки оценивали по особенностям распределения эхогенности с учетом визуализации в режиме энергетического доплеровского картирования полостей с венозным кровотоком. Количественно особенности венозного кровотока в строме шейки определяли по индексу васкуляризации (ИВ). Последний рассчитывали как отношение суммарной площади венозных лакун (в энергетическом допплеровском режиме-цветовые пятна различных размеров и форм с венозным спектром кровотока) к площади поперечного сечения шейки матки в исследуемом срезе, выраженное в процентах.

Результаты и обсуждение

Длина сомкнутой части цервикального канала по мере приближения к родам достоверно (p<0,05) уменьшалась. Так, за 6-13 дней до родов она была $3,1\pm0,13$ см, за 2-5 дней- $2,6\pm0,17$ см, за сутки до родов- $1,8\pm0,20$ см.

Ширина шейки матки и ее переднезадний размер как в проксимальной, так и дистальной плоскости сканирования в течение последних двух недель до родов достоверно (p<0,05) изменялись. Ширина шейки матки увеличивалась от $3,2\pm0,11$ см до $3,8\pm0,10$ см — на дистальном уровне сомкнутой части цервикального канала-и от $3,4\pm0,11$ см до $4,0\pm0,11$ см-на проксимальном уровне сомкнутой части цервикального канала. Переднезадний размер шейки матки увеличивался от $2,7\pm0,09$ см до $3,3\pm0,11$ см — на дистальном уровне сомкнутой части цервикального канала-и от $3,0\pm0,06$ см до $3,5\pm0,11$ см-на проксимальном уровне сомкнутой части цервикального канала.

Аналогичная ситуация имела место и по отношению к площади поперечного сечения шейки матки. Имелось достоверно значимое увеличение ее площади как в дистальной (с 7.0 ± 0.5435 до 10.3 ± 0.754 см²), так и проксимальной плоскости (с 8.1 ± 0.43 до 11.5 ± 0.53 см²).

По мере приближения к сроку родов ширина и переднезадний размер цервикального канала и площади его поперечного сечения в дистальных и проксимальных срезах, измеренные с помощью ультразвука, претерпевали изменения схожие изменения с поперечными размерами шейки матки. Отмечалась тенденция к увеличению численных значений показателя по мере приближения к родам (p<0,05).

Ширина цервикального канала увеличивалась от $1,6\pm0,03$ см до $2,2\pm0,09$ см — на дистальном уровне сомкнутой части цервикального канала-и от $3,4\pm0,04$ см до $2,4\pm0,08$ см-на проксимальном уровне сомкнутой части цервикального канала. Переднезадний размер цервикального канала увеличивался от $0,9\pm0,03$ см до $1,6\pm0,06$ см — на дистальном уровне сомкнутой части цервикального канала-и от $1,0\pm0,05$ см до $1,8\pm0,08$ см-на проксимальном уровне сомкнутой части цервикального канала. Площадь цервикального канала увеличивалась от $1,1\pm0,07$ см² до $2,7\pm0,18$ см² — на дистальном уровне сомкнутой части цервикального канала-и от $1,4\pm0,11$ см² до $3,6\pm0,18$ см²-на проксимальном уровне сомкнутой части цервикального канала (таблица1).

В то же время в течение двух недель до родов достоверно (p<0,05) увеличивался просвет цервикального канала – с 0.2 ± 0.02 см до 0.6 ± 0.07 см, то есть в 3 раза. Существенных различий между размерами просвета как на уровне наружного зева, так и на уровне проксимальной части не было, поэтому приведены обобщенный данные.

Кроме увеличения просвета канала перед родами отмечалось изменение его формы, эхогенности и частоты обнаружения слизи.

За 6-13 дней до родов прямая форма встречалась у 27%, за 2-5 дней-у 55%, за сутки до родов-у 85% беременных. При этом частота обнаружения срединного положения шейки матки с помощью эхоскопии в исследованных группах была 45%, 53% и 73%, то есть такой же, как и при влагалищном исследовании.

По мере приближения к сроку родов изменялась и эхогенность цервикального канала-

за сутки до родов у 48% беременных он был изоэхогенен со стромой, за 6-13 дней до родов – только у 25%.

В этот же период уменьшалась частота обнаружения слизи в цервикальном канале — с 37%-за 6-13 дней до родов — до 23% за 2-5 дней до родов, и оставалась неизменной до родов.

По мере приближения к сроку родов сосудистое обеспе-

чение шейки матки претерпевало существенные изменения. Они были связаны с увеличением в исследованных срезах площади стромальных венозных лакун.

Максимальный диаметр лакун увеличился как в дистальных ультразвуковых сканах, так и в проксимальных и составил 0.1 ± 0.02 см в третьей группе, 0.2 ± 0.02 см во второй, 0.4 ± 0.04 см в первой группах-на уровне наружного зева (p<0.05); 0.2 ± 0.03 см в третьей группе, 0.5 ± 0.03 см во второй, 0.6 ± 0.06 см в первой группах-на проксимальном уровне сомкнутой части цервикального канала (p<0.05, таблица 1).

За 6-13 дней до родов, площадь, которую лакуны занимали в строме шейки матки, на уровне наружного зева была $0.5\pm0.17~\rm cm^2$. За 2-5 дней до родов она увеличилась в 3 раза и достигла $1.6\pm0.24~\rm cm^2$, за сутки до родов составляла $2.3\pm0.25~\rm cm^2$.

На проксимальном уровне сомкнутой части цервикального канала площадь лакун изменилась от $1,6\pm0,22$ см² — за 6-13 дней до родов, до $2,6\pm0,28$ см²-за 2-5 дней до родов, и стала $3,5\pm0,35$ см²-за сутки до родов.

Увеличение площади лакун в большей степени происходило в дистальных отделах шейки матки (в 5 раз), чем в проксимальных отделах (в 2 раза). В результате этого за 5 дней до родов отношение суммарная площадь лакун на проксимальном уровне сомкнутой части цервикального канала / суммарная площадь лакун на дистальном уровне сомкнутой части цервикального канала уменьшалась с 3 (за 6-13 дней до родов 1,6/0,5=3) до 1,5 (за сутки до родов 3,5/2,3=1,5).

Индекс васкуляризации на уровне наружного зева увеличивался от $7\pm2,2$ в третьей группе до $18\pm2,1$ во второй и $23\pm2,5$ в первой группах. ИВ на проксимальном уровне сомкнутой части цервикального канала увеличивался от $19\pm2,6$ в третьей группе до $26\pm2,5$ во второй и $31\pm3,4$ в первой группах (таблица 1). На протяжении 13 дней до родов отношение ИВ на проксимальном уровне сомкнутой части цервикального канала / ИВ на дистальном уровне сомкнутой части цервикального канала уменьшалось от 3-3 а 6-13 дней до родов- до 1,3-3 а сутки до родов.

Полученные данные свидетельствуют об укорочении сомкнутой части цервикального канала, увеличении ширины, переднезаднего размера, площади шейки матки, цервикального канала, изменении сосудистого обеспечения шейки матки.

Внедрение в клиническую практику ультразвуковых методов исследования ознаменовало собой революцию в перинатологии, точнее в пренатальной диагностике особенностей развития плода. Однако польза от его применения для решения вопросов родоразрешения с позиций женского организма не столь очевидная. В частности, до сих пор основным критерием готовности организма женщины к родам остается пальпаторная оценка состояния шейки матки. При всех ее достоинствах, прежде всего экономических, это устаревшая технология прогнозирования родов, приводит к необходимости применения различных форм родо-активации, и, как следствие, достаточно высокому уровню ятрогенных нарушений состояния плода и новорожденных.

Применение ультразвука для диагностики готовности организма беременной к прерыванию беременности, в том числе к родам, по существу, свелось к измерению длины шейки матки. Это связано с устоявшимся представлением о том, что накануне и в процессе родов или выкидыша она укорачивается, сглаживается и втягивается в нижний сегмент (ретракция в теории «тройного нисходящего градиента»). Кроме того, рядом исследований была подтверждена связь между измеренной с помощью ультразвука длиной шейки матки и сроком начала родов, а также установлены значения прогностической значимости этого показателя. По оценкам авторов

Таблица 1. Параметры шейки матки на дистальном/проксимальном уровнях сомкнутой части цервикального канала.

	за сутки,	до родов	за 2-5 дней до родов		за 6-13 дней до родов		
длина сомкнутой части ц/канала, см	1,8±0,20		2,6±0,17		3,1±0,13		t1=3,1,p1<0,05 t2=2,4,p2<0,05 t3=5,4,p3<0,05
положение головки плода, см	-3,9±0,42		-3,6±0,36		-2,7±0,17		t1=0,5, ,p1>0,05 t2=2,3,p2<0,05 t3=2,6,p3<0,05
ширина ц/канала	2,2±0,09	2,4±0,08	1,8±0,12	2,0±0,07	1,6±0,03	1,9±0,04	t1=2,7,p1<0,05 t2=1,7,p2>0,05 t3=6,7,p3<0,05 t1=3,6,p1<0,05 t2=1,3,p2>0,05 t3=5,6,p3<0,05
п-з размер ц/канала	1,6±0,06	1,8±0,08	1,2±0,08	1,4±0,06	0,9±0,03	1,0±0,05	t1=4,p1<0,05 t2=3,5,p2<0,05 t3=10,p3<0,05 t1=4,p1<0,05 t2=5,1,p2<0,05 t3=8,9,p3<0,05
S ц/канала	2,7±0,18	3,6±0,18	1,9±0,21	2,4±0,14	1,1±0,07	1,4±0,11	t1=2,9,p1<0,05 t2=3,6,p2<0,05 t3=6,4,p3<0,05 t1=5,5,p1<0,05 t2=5,5,p2<0,05 t3=10,p3<0,05
просвет ц /канала,см	0,6±0,07	0,6±0,05	0,4±0,03	0,4±0,07	0,2±0,02	0,2±0,01	t1=2,6,p1<0,05 t2=5,6,p2<0,05 t3=5,5,p3<0,05 t1=2,3,p1<0,05 t2=2,9,p2<0,05 t3=8,p3<0,05
ширина ш/матки	3,8±0,10	4,0±0,11	3,5±0,10	3,7±0,16	3,2±0,11	3,4±0,11	t1=2,p1<0,05 t2=2,p2<0,05 t3=4,p3<0,05 t1=1,6,p1>0,05 t2=2,p2<0,05 t3=3,8,p3<0,05
п-з шейки матки	3,3±0,11	3,5±0,11	3,0±0,07	3,3±0,12	2,7±0,09	3,0±0,06	t1=2,3,p1<0,05 t2=2,7,p2<0,05 t3=4,2,p3<0,05 t1=1,3,p1>0,05 t2=2,2,p2<0,05 t3=4,p3<0,05
площадь шейки матки, смІ	10,3±0,54	11,5±0,53	8,9±0,43	10,3±0,81	7,0±0,54	8,1±0,43	t1=2,p1<0,05 t2=2,8,p2<0,05 t3=4,3,p3<0,05 t1=0,8,p1>0,05 t2=2,4,p2<0,05 t3=5,p3<0,05
цветовые пятна	2,3±0,25	3,5±0,35	1,6±0,24	2,6±0,28	0,5±0,17	1,6±0,22	t1=2,p1<0,05 t2=3,4,p2<0,05 t3=6,p3<0,05 t1=2,p1<0,05 t2=2,8,p2<0,05 t3=4,6,p3<0,05
ИВ	23±2,5	31±3,4	18±2,1	26±2,5	7±2,2	19±2,6	t1=1,5,p1>0,05 t2=3,6,p2<0,05 t3=4,8,p3<0,05 t1=1,2,p1>0,05 t2=1,9,p2>0,05 t3=2,8,p3<0,05
максимальный диаметр лакун, см	0,4±0,04	0,6±0,06	0,2±0,02	0,5±0,03	0,1±0,02	0,2±0,03	t1=4,4,p1<0,05 t2=3,6,p2<0,05 t3=6,7,p3<0,05 t1=1,5,p1<0,05 t2=7,1,p2<0,05 t3=6,p3<0,05
% визуализации лакун	62	51	73	71	82	83	

она может доходить до 80-90% [Berghella V., Talucci M., Desai A., 2003, Kwasan S., Paisarntuntiwong R., Charoenchainont P., 2005].

Исходя из приведенных данных, можно было бы утверждать, что найден простой и надежный способ предсказания начала родов. Более того, наши данные также подтвердили диагностическую значимость укорочения длины шейки матки перед родами. Однако, после анализа первоисточников и результатов собственных исследований отмеченная эффективность показателя нуждается в комментарии.

В частности, Ramanathan G. с соавторами [2003] установили, что если длина шейки матки, измеренная с помощью ультразвукового метода, в 37 недель беременности меньше 20 мм, то роды начнутся в пределах 37 дней, а по данным Bayramoglu O. с соавторами [2005] начало родов можно ожидать в ближайшие 7 дней, если длина шейки матки в 37 недель была 29,5 мм. Все-таки 29,5 и 20 мм представляют собой разные оценочные критерии одного и того же состояния, причем с разным доверительным интервалом в точности предсказания.

При полном согласии с важностью клинического признака начала родов и их динамики при короткой или совсем сглаженной шейке матки, следует отметить два важных момента для интерпретации этого устоявшегося утверждения.

Первое связано с тем, что с помощью ультразвука нельзя установить границу раздела шейки и тела матки. Эта граница понятие больше гистологическое, чем анатомическое, а тем более сонографическое. Граница между шейкой и телом матки с помощью ультразвука определяется по косвенным признакам-по углу наклона, смыканию стенок, расстоянию до плодного мешка или предлежащей части и пр. Неопределенность одной из двух точек измерения расстояния ставит результат измерения в зависимость от личных качеств исследователя, саму процедуру определения длины шейки заведомо неточной, а каждому исследователю позволяет в результаты измерения вкладывать свое представление о показателе.

Второе обстоятельство связано с устоявшимся мнением, что шейка матки в родах становится короче, вплоть до ее полного втягивания (ретракция шейки) в нижний сегмент. Перед родами и в родах укорачивается не сама шейка матки, а та ее влагалищная порция, которая находится непосредственно перед предлежащей частью и доступна пальпации. В процессе родов сама шейка удлиняется и увеличивается в объеме. Это знакомо каждому акушеру-гинекологу, который осматривал родовые пути после родов.

В ходе данного нами исследований показано, что перед родами сомкнутая часть церви-кального канала уменьшалась. Но это не доказывает, что вся шейка матки становилась короче, а только означает, что та ее часть, которая не успела расшириться под влиянием вклинивания в проксимальный отдел цервикального канала предлежащей части вместе с плодным пузырем. А сама по себе шейка матки могла оставаться прежней длины или даже увеличиваться.

В ходе нашего исследования было выявлено, что накануне родов происходят существенные изменения в сосудистом обеспечении дистальных отделов шейки матки, при относительной стабильности такового в проксимальных отделах. Это наблюдение свидетельствует о сложных процессах преобразования шейки матки накануне родов, которые тесно связаны с превращением шейки матки в кавернозное тело и завершением формирования цервикального сосудистого сплетения, по аналогии с миометральным, образующим сосудистый синус. То есть процесс преобразования матки из плодосохраняющего органа в плодоизгоняющий связан с цервикальной сосудистой перестройкой. Вероятно, ее полноценность может быть наиболее точным прогностическим признаком наступления родов и их благоприятного са-

мопроизвольного завершения.

Процесс готовности к родам происходит неравномерно. В соответствии с клиническими данными он начинается за 2 недели до родов (фиксация предлежащей части, опускание дна матки и пр.). В течение последующих дней его течение не сопровождается явными морфологическими изменениями в шейке матки, что отражается в некотором изменении численных значений измеренных показателей, которые не достигают уровня статистической значимости. Но в течение последних сутки до родов происходит «скачок», и по ряду позиций (укорочение сомкнутой части цервикального канала, спрямлении, увеличение просвета канала и изменение его эхогенности, а также увеличение сосудистого обеспечения дистальной части шейки матки) выявляются статистически подтвержденные изменения. Это означает, что в последние дни и часы пред родами интенсивность процессов преобразования существенно увеличивается. Это указывает на то, что эффективность подготовки к родоразрешению с помощью искусственных средств зависит о того, на каком этапе готовности к родам они стали применяться. Даже хорошо зарекомендовавшие препараты, могут оказаться неэффективными, на начальных стадиях преобразования матки из плодосохраняющего органа в плодоизгоняющий, и наоборот, малоэффективные средства, примененные на последних стадиях, могут дать хороший результат.

Выводы

- 1. Переход из состояния беременности, когда все жизненные ресурсы направлены на сохранение плода, в процесс родов, когда те же ресурсы направлены на избавление от того, что сохранялось на протяжении 9 месяцев, осуществляется неравномерно. Его интенсивность нарастает к моменту родов и становится максимальной на протяжении суток, предшествующим родам.
- 2. Изменение акустической плотности шейки (цервикального канала) косвенно отражает биохимические изменения в строме шейки матки, является надежным ультразвуковым признаком готовности организма беременной к родам.
- 3. Формирование цервикального сосудистого сплетения в переходный период между беременностью и родами указывает на его значимость для завершения беременности и начала родового процесса.
- С помощью ультразвукового метода можно измерить сомкнутую часть цервикального канала, но не всю длину шейки матки.

Литература

- 1. Абрамченко, В. В. Активное ведение родов / В. В. Абрамченко. СПб.: «Специальная литература», 1997. С. 42 45.
- 2. Воскресенский, С. J. Биомеханизм родов: дискретно-волновая теория / С. Л. Воскресенский. Минск: ПК ООО «ПолиБиг», 1996. С.60 61.
- 3. Воскресенский, С. JL Изменение стромы шейки матки при беременности и родах / С. Л. Воскресенский // Здравоохранение Беларуси. 1995. № 8. С. 39 41.
- 4. Воскресенский, С. JL Ультразвуковое исследование в диагностике угрозы прерывания беременности / / С. Л. Воскресенский // Ультразвуковая диагностика в акушерстве, гинекологии и педиатрии. 1993. № 2. С. 49 54.
- 5. Липман, А. Д. Ультразвуковые критерии истмико-цервикальной недостаточности / А. Д. Липман // Акушерство и гинекология. 1996. № 4. С. 5-7.
- 6. Чернуха, Е. А. Родовой блок / Е. А. Чернуха. М.: «Триада-Х», 2003. С. 78 – 79. 83 – 88.
- 7. Berghella, V. Does transvaginal sonographic measurement of cervical length before 14 weeks predict preterm delivery in high-risk pregnancies / V. Berghella, M. Talucci, A. Desai // Ultrasound Obstet. Gynecol. 2003. V. 21, N° 2. P. 140 4.
- 8. Cervix length and relaxin as predictors of preterm birth / G. Davies [et al.] // J. Obstet. Gynaecol. Can., 2008. V. 30, \mathbb{N}^{9} 12. P. 1124 1131.
- 9. Comparison between subjective and objective assessments of the cervix before induction of labour/ M. R. Elghorori [et al.] // J. Obstet. Gynaecol. 2006. V. 26, \mathbb{N}^{0} 6. P. 521 526.

birth in women with a history of preterm birth / J. M. Crane. D. Hutchens 2005. № 88. P. 48 - 55. // Ultrasound Obstet. Gynecol., 2008, V. 32, № 5, P. 640 – 645. 14. Prediction of spontaneous onset of labor at term: the role of cervical length measurement and funneling of internal cervical detected by trans-11. Does knowledge of cervical length and fetal fibronectin affect management of women with threatened preterm labor? A randomized trial / A. vaginal ultrasonography / O. Bayramoglu [et al.] // Am. J. Perinatol. 2005. Ness [et al.] // Am. J. Obstet. Gynec. 2007. P. 426 - 428. V. 22 № I. P. 35 - 39. 12. Jian, L. Comparison study on transvaginal ultrasonographic meas-15. Ultrasound examination at 37 weeks' gestation in the prediction of urement and cytokine in prediction of the cervical ripening and the onset pregnancy outcome: the value of cervical assessment / G. Ramanathan, time of term labor / L. Jian, X. Mu, W. Wu // Zhonghua Fu ChanKe Za Zhi. C Yu, E. Osei, K. H. Nicolaides // Ultrasound Obstet. Gynecol. 2003. V. 2002. V. 37, № 12. P. 708 – 711. 22. № 6. P. 598 – 60. 13. Kwasan, S. Cervical length measurement by transvaginal sonogra-Поступила 31.05.2011 г.

an, R. Paisarntuntiwong, P. Charoenchainont // J. Med. Assoc. Thai.

10. Crane, J. M. Use of transvaginal ultrasonography to predict preterm

phy in preterm pregnant women for prediction of preterm birth / S. Kwas-