А.С. Ластовка, Е.А. Лабонарская
УО «Белорусский государственный медицинский университет»
Рассмотрен вопрос выбора оптимального лабораторного животного для моделирования раневых дефектов слизистой оболочки твердого неба. Установлено, что оптимальным лабораторным животным для экспериментального моделирования раневых дефектов слизистой оболочки твердого неба является кролик. Разработана и описана методика операции моделирования раневых дефектов слизистой оболочки твердого неба. Для эксперимента в качестве моделей использовали 10 кроликов породы «Шиншила». Моделирование раневых дефектов слизистой оболочки твердого неба выполняли под общим обезболиванием путем формирования двух симметричных дефектов слизистой оболочки твердого неба на всю толщину до кости заданной геометрической формы и заданных размеров с использованием модифицированного ручного инструмента. Разработанный метод моделирования одинаковых раневых дефектов слизистой оболочки твердого неба позволяет изучать течение раневого процесса при использовании различных методов лечения в идентичных условиях на одном животном и провести объективную математическую оценку процесса заживления раневых поверхностей в сравнительном аспекте.
ключевые слова: моделирование раневых дефектов, дефекты слизистой оболочки твердого неба, лабораторные животные, экспериментальная модель
Modeling of wound defects of the mucosa of the hard palate in the experiment
A.S. Lastovka, E.A. Labonarskaya
The issue of choosing the optimal laboratory animal for modeling wound defects of the mucous membrane of the hard palate is considered. It has been established that the rabbit is the optimal laboratory animal for experimental modeling of wound defects in the mucous membrane of the hard palate. A technique for the operation of modeling wound defects of the mucous membrane of the hard palate has been developed and described. For the experiment, 10 Chinshila rabbits were used as models. Modeling of wound defects of the mucous membrane of the hard palate was performed under general anesthesia by the formation of two symmetrical defects of the mucous membrane of the hard palate for the entire thickness to the bone of a given geometric shape and specified dimensions using a modified manual instrument. The developed method for simulating the same wound defects of the mucous membrane of the hard palate makes it possible to study the course of the wound process using different methods of treatment in identical conditions on one animal and to conduct an objective mathematical assessment of the healing process of wound surfaces in a comparative aspect.
keywords: modeling of wound defects, defects of the mucous membrane of the hard palate, laboratory animals, experimental model
1. Palatal wound healing using a xenogeneic collagen matrix – histological outcomes of a randomized controlled clinical trial / D. S. Thoma [et al.] // J Clin Periodontol. – 2016. – P. 1124–1131.
2. Полимерная фосфолипидная матрица для закрытия открытых ран на слизистой оболочке полости рта / Д. А. Рябова, [и др.]. – М.: СТМ, 2016. – Т. 8, № 1. – С. 55–63.
3. Bishara, S. E. Effects of a fibrin-sealant wound dressing on the healing of full-thickness wounds of the hard palate: preliminary report / S. E. Bishara, D. L. Zeitler, C. R. Kremenak // Cleft Palate J. – 1986. – Vol. 23(2). – P. 144–152.
4. Naofumi, Tamaki. Hydrogen-Rich Water Intake Accelerates Oral Palatal Wound Healing via Activation of the Nrf2/Antioxidant Defense Pathways in a Rat Model / Naofumi Tamaki, Rita Cristina Orihuela-Campos, Makoto Fukui, Hiro-O Ito // Oxid. Med. Cell. Longev. – 2016. – Art. 5679040.
5. Yang, L. Social isolation impairs oral palatal wound healing in sprague-dawley rats: a role for miR-29 and miR-203 via VEGF suppression / L. Yang, C. G. Engeland, B. Cheng. – USA: PLoS ONE. – 2013. – Vol. 8, № 8. – Art. ID e72359.
6. Topical application of the lectin Artin M accelerates wound healing in rat oral mucosa by enhancing TGF-beta and VEGF production / Y. J. Kim [et al.] // Wound Repair and Regeneration. – 2013. – Vol. 21, № 3. – P. 456–463.
7. Экспериментальное моделирование в современной раневой баллистике / А. В. Денисов [и др.] // Вестник Российской военно-медицинской академии. – 2018. – № 2 (62). – С. 144–149.
8. Engineered in vitro disease models / Kambez H. Benam [et al.] // Annu. Rev. Pathol. – 2015. – № 10. – P. 195–262.
9. Tissue-engineered disease models / Published online: Nat. Biomed. Eng. – 2018. – № 12. – P. 879–880.
10. Bryda, E. C. The Mighty Mouse: The Impact of Rodents on Advances in Biomedical Research / E. C. Bryda. – St. Louis. MO: Mo. Med. – 2013. – Vol. 110(3). – P. 207–211.
11. Histological features of oral epithelium in seven animal species: As a reference for selecting animal models / Guoliang Sa [et al.] // Eur. J. Pharm. Sci. – 2016. – Vol. 81. – P. 10–17.
12. Dannan, A. Animal Models in Periodontal Research: A Mini-Review of the Literature / A. Dannan, F. Alkattan // The Internet Journal of Veterinary Medicine. – 2007. – Vol. 5, № 1.
13. Significantly different proliferative potential of oral mucosal epithelial cells between six animal species / M. Kondo [et al.] // J. Biomed. Mater. Res. – 2014. – Vol. 102. – P. 1829–1837.
14. Bismuth subgallate as a topical haemostatic agent at the palatal wounds: a histologic study in dogs / S. H. Kim [et al.] // Int. J. Oral Maxillofac. Surg. – 2012. – Vol. 41(2). – P. 239–243.
15. Санитарные правила и нормы 2.1.2.12-18-2006 «Устройство, оборудование и содержание экспериментально-биологических клиник (вивариев)»: приняты постановлением Главного государственного санитарного врача Республики Беларусь от 31.10.2006 г. № 131. – Минск: М-во здравоохранения Республики Беларусь, 2006. – 2 с.
References
1. Palatal wound healing using a xenogeneic collagen matrix - histological outcomes of a randomized controlled clinical trial / D. S. Thoma [et al.] // J. Clin. Periodontol. – 2016. – P. 1124–1131.
2. Polimernaya fosfolipidnaya matricza dlya zakry`tiya otkry`ty`kh ran na slizistoj obolochke polosti rta / D. A. Ryabova [et al.]. – M.: STM, 2016. – T. 8, № 1. – S. 55–63.
3. Bishara, S. E. Effects of a fibrin-sealant wound dressing on the healing of full-thickness wounds of the hard palate: preliminary report / S. E. Bishara, D. L. Zeitler, C. R. Kremenak // Cleft Palate J. – 1986. – Vol. 23(2). – P. 144–152.
4. Naofumi Tamaki Hydrogen-Rich Water Intake Accelerates Oral Palatal Wound Healing via Activation of the Nrf2/Antioxidant Defense Pathways in a Rat Model / Naofumi Tamaki, Rita Cristina Orihuela-Campos, Makoto Fukui, Hiro-O Ito // Oxid. Med. Cell. Longev. – 2016. – Art. 5679040.
5. Yang, L. Social isolation impairs oral palatal wound healing in sprague-dawley rats: a role for miR-29 and miR-203 via VEGF suppression / L. Yang, C. G. Engeland, B. Cheng. – USA: PLoS ONE, 2013. – Vol. 8, № 8. – Art. ID e72359.
6. Topical application of the lectin Artin M accelerates wound healing in rat oral mucosa by enhancing TGF-beta and VEGF production / Y. J. Kim [et al.] // Wound Repair and Regeneration. – 2013. – Vol. 21, № 3. – P. 456–463.
7. E`ksperimental`noe modelirovanie v sovremennoj ranevoj ballistike / A. V. Denisov [et al.] // Vestnik Rossijskoj voenno- mediczinskoj akademii. – 2018. – № 2 (62). – S. 144–149.
8. Engineered in vitro disease models / Kambez H. Benam [et al.] // Annu. Rev. Pathol. – 2015. – Vol. 10. – P. 195–262.
9. Tissue-engineered disease models / Published online: Nat. Biomed. Eng. – 2018. – Vol. 12. – P. 879–880.
10. Bryda, E. C. The Mighty Mouse: The Impact of Rodents on Advances in Biomedical Research / E. C. Bryda. – St. Louis. MO: Mo. Med., 2013. – Vol. 110(3). – P. 207–211.
11. Histological features of oral epithelium in seven animal species: As a reference for selecting animal models / Guoliang Sa [et al.] // Eur. J. Pharm. Sci. – 2016. – Vol. 81. – P. 10–17.
12. Dannan, A. Animal Models in Periodontal Research: A Mini Review of the Literature / A. Dannan, F. Alkattan // The Internet Journal of Veterinary Medicine. – 2007. – Vol. 5, № 1.
13. Significantly different proliferative potential of oral mucosal epithelial cells between six animal species / M. Kondo [et al.] // Published online: J. Biomed. Mater. Res. – 2014. – Vol. 102. – P. 1829–1837.
14. Bismuth subgallate as a topical haemostatic agent at the palatal wounds: a histologic study in dogs / S. H. Kim [et al.] // Int. J. Oral Maxillofac. Surg. – 2012. – Vol. 41(2). – P. 239–243.
15. Sanitarny`e pravila i normy` 2.1.2.12-18-2006 «Ustrojstvo, oborudovanie i soderzhanie e`ksperimental`no-biologicheskikh klinik (vivariev)»: prinyaty` postanovleniem Glavnogo gosudarstvennogo sanitarnogo vracha Respubliki Belarus` ot 31.10.2006 g. № 131. – Minsk: Ministerstvo zdravookhraneniya Respubliki Belarus`, 2006.
Поступила 04.02.2022 г.
Формат файла: pdf (376.46 Кб)